
',%%A[t IN & N NI I S(1'1 RSA I' i(O(AO (ISI ' IIO I RO I R ALTIM NOS(TDI1 13
OSIR II T I P RA[FN SYSTI-MS UN(ASSIFIF)IS mio~mmmmi

RS V SOMIN

MOhhhhhhMMOhMl
MOSOhhhhhhhhhu
Smhhhhhhhhhhhh
MOhhhhhOhhOmlO
MhhhhhhhhMhhhlE

0%0

V, Technical Document 1113
iI ',,July 1987

CDo 0

Concepts and Techniques for
Support of Real Time DistributedOperating Systems

V

Computer Science Department
Carnegie-Mellon University

1gSTAT&S

*&

Approved for public release; The views and conclusions contained in this
distribution is unlimited. report are those of the authors and should

not be interpreted as representing the
official policies, either expressed or
implied, of the Naval Ocean Systems Center
or the U.S. government.

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

E. G. SCHWEIZER, CAPT, USN R. M. HILLYER
Commandr Technhc" Director

ADMINISTRATIVE INFORMATION

This report was prepared by Carnegie - Mellon University under contract
N66001-83-C-0305 for Code 443 of the Naval Ocean Systems Center, San Diego, CA
92152-5000.

Released by Under authority of
D.C. McCall. Head W.T. Rasmussen, Head
C2 Information Processing Advanced C2 Technologies
and Display Technology Division
Branch

JJ

UNCLASSIFIED
SECURITY CLASSIFICAIION 00:H PG

REPORT DOCUMENTATION PAGE
It REPORT SECURINYCLASSIFICATION l ET~lEMNO

UNCLASSIFIED ____________________

24 SECURITY CLASSIFICATION AUTHORITY 3 OISRIGTION/AVAILAIUTY OF REPORT

2b DECL ATION G O SCHDUL Approved for public release; distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBERIS) S MONITORING ORGANIZATION REPORT NIJINENS

NOSC TD 1113

Go NAME OF PERFORMING ORGANIZATION 6b, OFFICE SYMBOL. 78, NAME OF MONITORING ORGANIZATION

Carnegie -Mellon University J ________ Naval Ocean Systems Center
6c ADDRESS ICoy Stt &,,d ZIP Codal 7b ADDRESS Maey Stat mwd&ZP Coals,

Computer Sciences Department
Pittsburgh, PA 15213 San Diego, CA 92152-5000

So NAME Of FUNDING SPONSORING ORGANIZATION ft5 OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMK-0R
W4 mpek".

Office of Naval Technology JONT N66001-83-C-0305
61 A!)OPESS C., SIut. tWdZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM ELEMENT NO PROJECT Noo TASK NO AGENCY

800 N. Quincy ACSINN

Arlington, VA 22217-5000 61153N CC15 DN488 752

Concepts and Techniques for Support of Real Time Distributed Operating Systems

12 PERSONAL AjTtoAS

13. YPE Of REFOR' 13b TIME COVERED ISDATE OF REPORT (row. SomIA. Dayi 6 PAGE COUNT
Interim FROM Feb 85 TO Dec 85 July 1987 264

16 SUPP.EMENTAR' NCIA11OOI

7 COSATI CODES I a SUBJECT TERMS ICON~ut on revers ,f nmcesouy 64W ,detWA by 6160k Itamffr

- FIELD GROUP I suB-GROUP cmon rnato

freeze mode

9 AETRACdendF y blck mnt.unfreeze process

The goal of the Archons project is to conduct research into the issues of decentralization in distributed computing
systems at the operating level and below. The primary research issues being investigated within Archons are decentralized
control team and consensus decision making, transaction management, probabilities algorithms, and architectural support in
a real -time environment.

DD FORM 1473, 84 JAN 53 APR EDITION MAY BE USED UNTIL EXHAUSTED UNCLASSIFIED
ALL OTHER EDMTONS ARE OBSOLETE ______________________W

UUNCLASSIFIED

S@UUTYT cLAWgmnCAImw @F THIS *AWWg DAts &W. P

Table of Contents

SECTION I 1
1. Introduction 2
2. Summary 3
3. Conclusions 4

SECTION II 5
4. Client Interface Specification 6

4.1 Overview 6
4.2 ArchOS Computational Model 7

4.2.1 Principal Components 7
4.2.1.1 Distributed Program 7
4.2.1.2 Arobject 8

4.2.1.2.1 Arobject Specification 8
4.2.1.2.2 Arobject Body 9

4.2.1.3 Processes 10
4.2.1.4 Sample Arobject 10

4.2.2 Communication Facilities 10
4.2.3 System Load and Initialization 12
4.2.4 Transactions 13

4.2.4.1 Elementary and Compound Transactions 13
4.2.4.2 Locks 15
4.2.4.3 Transaction Scope, Models, and Lock Passing 17

4.2.5 Real.Time Facilities 19
4.2.6 Policy Definitions 21

4.3 ArchOS Primitives 23
4.3.1 Specification of Primitives 23
4.3.2 Arobject/Process Management 24

4.3.2.1 Create 25
4.3.2.2 Kill 25
4.3.2.3 SelfID and ParentlD 26
4.3.2.4 BindName 26
4.3.2.5 UnbindName 27
4.3.2.6 FindID and FindAIIID 28

4.3.3 Communication Management 29
4.3.3.1 Request 29
4.3.3.2 RequestSingle and RequestAll 30
4.3.3.3 CetReply 31
4.3.3.4 Accept and AcceptAny 31
4.3.3.5 CheckMessageQ 32
4.3.3.6 Reply 33

4.3.4 Private Object Management 33
4.3.4.1 Allocate/Free Object 34
4.3.4.2 FlushPermanent 34

4.3.5 Synchronization 35
4.3.5.1 Region 35
4.3.5.2 CreateLock and DeleteLock 35
4.3.5.3 SetLock, TestLock, and ReleaseLock 36

4.3.6 Transaction%/Recovery Management 37
4.3.6.1 Compound Transaction 37
4.3.6.2 Elementary Transaction 38
4.3.6.3 SelfTid and ParentTid 39
4.3.6.4 AbortTransaction 39
4.3.6.5 TransactionType 40
4.3.6.6 IsCommitted 40
4.3.6.7 IsAborted 41

4.3.7 File Management 41
4.3.7.1 File Access Interface 41

4.3.8 1/0 Device Management 43
4.3.8.1 Basic I/0 Device Access Interface 43
4.3.8.2 IOWait 44
4.3.8.3 SetlOControl 44

4.3.9 Time Management 45
4.3.9.1 GetRealTime 45
4.3.9.2 GetTimeDate 46
4.3.9.3 Delay 46
4.3.9.4 Alarm 47
4.3.9.5 SetTimeDate 48

4.3.10 Policy Management 48
4.3.11 System Monitoring and Debugging Support 49

4.3.11.1 Freeze and Unfreeze 49
4.3.11.2 Fetch and Store Arobject and Process' Status 50
4.3.11.3 Kill Arbitrary Arobject/Process 51
4.3.11.4 Monitor Message Communication Activities for Arobject/Process 52
4.3.11.5 SetErrorBlock 52

4.4 Rationale for the ArchOS Client Interface 53
4.4.1 Introduction 53
4.4.2 ArchOS Computational Model 53

4.4.2.1 Principal Components 55
4.4.2.2 Communication Facilities 58

4.4.2.2.1 Rationale for Accept/Request Rendezvous Mechanism 58
4.4.2.2.2 Rationale for Broadcast Request Capability (RequestAll Primitive) 58
4.4.2.2.3 Rationale for Intra-Arobject Request Capability 59
4.4.2.2.4 Rationale for Invocation Parameter Passing 59

4.4.2.3 System Load and initialization 59
4.4.2.4 Transa.tions 60
4.4.2.5 Rationale for the Inclusion of Compound Transactions 62
4.4.2.6 Rationale for the Transaction Syntax 65
4.4.2.7 Rationale for Lock Support Decisions 65
4.4.2.8 Rationale for Inclusion of Critical Regions in ArchOS 68
4.4.2.9 Rationale for Transaction Nesting Rules 68
4.4.2.10 Rationale for Inclusion of the AbortlncompleteTransaction Primitive 69
4.4.2.11 Real.Time Facilities 72
4.4.2.12 Policy Definitions 73

4.4.3 ArchOS Primitives 76
4.4.3.1 Important Design and Research Problems 76
4.4.3.2 Arobject/Process Management 77
4.4.3.3 Communication Management 78

iii

4.4.3.4 Synchronization 79
4.4.3.5 Transaction/Recovery Management 80
4.4.3.6 File Management 85
4.4.3.7 I/0 Device Management 85
4.4.3.8 Time Management 86
4.4.3.9 Policy Management 86
4.4.3.10 System Monitoring and Debugging Support 87

4.5 Program Examples 87
4.5.1 The Problerb: A Distributed Directory with Partially Replicated Data 87
4.5.2 The General Approach to the Problem 88
4.5.3 Solution 1: Two Cooperating Classes of Arobjects 89
4.5.4 Solution 2: A Single, Distributed Arobject 97

5. ArchOS System Architecture Description 106
5.1 Overview 106

.5.2 ArchOS System Architecture 107
5.2.1 Objectives 108
5.2.2 Basic Approach 109
5.2.3 Functional Dependency among ArchOS Subsystems ill

5.3 Structure of ArchOS Subsystems 113
5.3.1 Objectives 113
5.3.2 Internal Structure of Subsystems 114

5.3.2.1 Service Protocol 115
5.3.2.2 Generic Structure for a Server 116

6. ArchOS System Design Description 118
6.1 Overview 118
6.2 ArchOS Kernel 119

6.2.1 Overview of Kernel 119
6.2.2 ArchOS Alpha Subkernel 119
6.2.3 ArchOS Base Kernel 123

6.2.3.1 Kernel Arobjects and Processes 123
6.2.3.2 Kernel Communication Management 125
6.2.3.3 Policy Management 126
6.2.3.4 Time-driven Scheduling Management 127
6.2.3.5 Address Space Management 129
6.2.3.6 Synchronization Management 143

6.3 Arnhiject/Process, Management Subsystem 144
6.3.1 Arobject/Process Management 144

6.3.1.1 Arobject/Process Assignment Policy 146
6.3.1.2 Life cycle of Arobject/Process 147
6.3.1.3 ArchOS primitives 147
6.3.1.4 Creation and Destruction of Arobject/Process 150

6.3.2 Name Management 152
6.3.3 Private Object Management 153
6.3.4 Recovery Management 154

6.4 Communication Subsystem 154
6.4.1 Message Header and Body 155
6.4.2 Message Queue 155
6.4.3 Communication Manager 155

6.4.3.1 Components of the Communicatin Manager 156

iv

6.4.3.2 ArchOS primitives 156
6.4.4 Remote Invocation Protocol 158
6.4.5 RPC for Shared Private Objects 159

6.5 Transaction Subsystem 161
6.5.1 Transaction Types, Scopes, and Tree 161
6.5.2 Transaction Management 161

6.5.2.1 Components of the 1 ransaction Manager 162
6.5.2.2 ArchOS primitives 162

6.5.3 Three-Phase Commit Protocol 163
6.5.4 Compensation Action Management 164
6.5.5 Lock Management 164
6.5.6 Recovery Management 166

6.6 File Management Subsystem 166
6.6.1 Client Arobject's File System Interface 169
6.6.2 File Arobjects 171

6.6.2.1 Components of a File Arobject 173
6.6.2.2 Normal and Permanent File Manipulations 174
6.6.2.3 Atomic File Manipulations 175

6.6.3 Prefix Map Management 176
6.6.3.1 Components of the Prefix Map Management Subsystem 178
6.6.3.2 Directory Mounting and Reassignment 179
6.6.3.3 Restart 180

6.6.4 Directory Management 180
6.6.4.1 Components of the Directory Management Subsystem 184
6.6.4.2 The Directory B-Tree 185
6.6.4.3 FDM File Manipulation Operations 187

6.6.5 File Management Scenarios 188
6.7 Page Set Subsystem 1 91

6.7.1 Standard Page Set Subsystem 194
, 6.7.1.1 Components of the Standard Page Set Subsystem 197

6.7.2 Atomic Page Set Subsystem 200
6.7.2.1 Components of the Atomic Page Set Subsystem 204
6.7.2.2 Accessing and Modifying Atomic Page Sets 207
6.7.2.3 Transaction Commit and Abort Handling 208

6.7.3 Logical Disk Subsystem 210
6.7.3.1 Components of the Logical Disk Subsystem 213
6.7.3.2 Disk Layout 214
6.7.3.3 Disk Page Allocation 214
6.7.3.4 Bad Page Handling 215

6.7.4 Restart/Reconfiguration Subsystem 216
6.7.4.1 Components of the Restart/Reconfiguration Subsystem 220
6.7.4.2 Restart 222
6.7.4.3 Garbage Collection and Disk Checking 223

6.8 I/O Device Subsystem 223
6.8.0.1 Policy Management 224

6.9 Time- Driven Scheduler Subsystem 224
6.9.1 Best-Effort Scheduling 224

6.9.1.1 Value Function Processing 224
6.9.1.2 Well-Known Scheduling Algorithms 226
6.9.1.3 A Best-Effort Scheduling Algorithm 228

v

6.9.2 Time Management 229
6.9.3 Short-term vs. Long-term Scheduling 230

6.10 Time-Driven Virtual Memory Subsystem . 231
6.10.1 Memory Management Policies and Techniques 231
6.10.2 Time-Driven Virtual Memory Subsystem Primitives 235
6.10.3 Components of the Time-Driven Virtual Memory Subsystem 240
6.10.4 Interaction With Arobject/Process Manager and Time-Driven Scheduler 245

6.11 System Monitoring and Debugging Subsystem 249
6.11.1 Monitoring and Debugging Management 249
6.11.2 Monitoring/Debugging Protocol 249

vi

List of Figures

Figure 4-1: Distributed Program using Arobjects 11
Figure 4-2: Communication Paradigm in ArchOS 12
Figure 4-3: Sample Transaction Tree 17
Figure 4-4: Selective Lock Passing by the Request Primitive 70
Figure 4-5: RequestAll Transaction Tree 71
Figure 5-1: Overview of ArchOS System Architecture 110
Figure 5-2: Functional Dependency among ArchOS Subsystems 111
Figure 5-3: Relationship among Service, Server, and Arobject 114
Figure 5-4: Generic Server Structures for a Server 117
Figure 6-1: Logical Structure of ArchOS Kernel 120
Figure 6-2: Policy Definition Module and PDD 127
Figure 6-3: Virtual Address Space (One per Process) 130
Figure 6-4: Arobject Address Space Lists 141
Figure 6-5: Address Space Descriptor 142
Figure 6-6: Shared Page Set List 143
Figure 6-7: Components of the Arobject/Process Subsystem 145
Figure 6-8: An example of Arobject Descriptors 146
Figure 6-9: Life Cycle of an Arobject and Process 148
Figure 6-10: Creation and Destruction of an Arobject and Process 151
Figure 6-11: Remote Invocation Protocol 159
Figure 6-12: Interaction Sequence for a Remote Invocation Request 160
Figure 6-13: Remote Procedure Call Sequence at a Remote Communication Manager 160
Figure 6-14: The Partitioned File Subsystem Directory Structure 167
Figure 6-15: Subsystems within the File Management Subsystem 168
Figure 6-16: Components of a File Arobject 174
Figure 6-17: Components of the Prefix Map Management Subsystem 178
Figure 6-18: Components of the Directory Management Subsystem 184
Figure 6-19: Structure of a Directory B-tree Node 186
Figure 6-20: Interactions in the Implementation of the CreateFile Primitive 189
Figure 6-21: Interactions in the Implementation of the CloseFile Primitive 190
Figure 6-22: Major Components of the Page Set Subsystem 193
Figure 6-23: Components of the Standard Page Set Subsystem 197
Figure 6-24: Standard Page Set B-Tree 198
Figure 6-25: Components of the Atomic Page Set Subsystem 205
Figure 6-26: Atomic Page Set Modification List 206
Figure 6-27: Components of the Logical Disk Subsystem 213
Figure 6-28: Layout of the Page Allocation Map 215
Figure 6-29: State Diagram for Logical Disks 217
Figure 6-30: Components of the Restart/Reconfiguration Subsystem 221
Figure 6-31: Process Model Attributes for Process i 225
Figure 6-32: Four "Typical" Processes with their Value Functions 226
Figure 6-33: Life Cycle of an Address Space 239
Figure 6-34: Components of the Time Driven Virtual Memory Subsystem 241
Figure 6-35: Address Space Working Sets List 242
Figure 6-36: Page-In Lists 243
Figure 6-37: Page-Out and Reclaim Lists 244
Figure 6-38: Free Page Frame List 244

vii

Figure 6-39: TDVM, A/PM, and TDS Subsystem Interactions 245
Figure 6-40: Normal Processor Rescheduling Sequence 246
Figure 6-41: Page Fault Sequence 248
Figure 6-42: Page-In or Swap-In Completion Sequence 248

SECTION I

2

1. Introduction

This document records interim progress during the period 1 February 1985 through3l December

1985 since the last technical report. Contained in this report are three major design specifications for

the ArchOS decentralized operating system that is being built at CMU as part of the Archons project

with partial support from NOSC. Each design specification appears as a separate chapter in Section

II of this report.

The Client Interface Specification in Chapter 4 of this report describes the functionality of ArchOS

as seen by client application programs. In Chapter 5, the ArchOS System Architecture Specification

summarizes the structure of ArchOS that supports the ArchOS client interface. Chapter 6 contains

the System Design Description of ArchOS. The System Design describes the structure and

functionality of major components of ArchOS, such as the ArchOS kernel, the arobject/process

management subsystem, the communication subsystem, the transaction subsystem, the file

subsystem, the I/0 device subsystem, the time-driven scheduler subsystem, and the monitoring and

debugging subsystems.

This document does not report in detail on the current status and design of the Alpha kernel

software that will eventually support ArchOS in the Archons Testbed. A separate report devoted to

Alpha is currently being prepared and will be delivered shortly.

3

2. Summary

The goal of the Archons project is to conduct research into the issues of decentralization in

distributed computing systems at the operating system level and below. The primary research issues

being investigated within Archons are decentralized control, team and consensus decision making,

transaction management, probabilistic algorithms, and architectural support in a real-time

environment.

A major focus of research in Archons is the ArchOS decentralized operating system. ArchOS will

serve as the primary evidence that the theoretical ideas and practical implementation approaches

proposed by Archons actually perform satisfactorily. ArchOS consists of the ArchOS kernel,

subsystems, and system objects. The ArchOS kernel provides basic mechanisms for time-driven

resource management. The subsystems together with system objects establish ArchOS facilities.

The primary results achieved by CMU's effort during 1985 are as follows:

" completion of the Client Interface Specification for ArchOS,

* completion of the System Architecture Specification for ArchOS,

" completion of the System Design Description for ArchOS, and

" successful implementation and testing of the initial version of the Alpha kernel.

4

3. Conclusions

Continued and steady progress is being achieved in developing the ArchOS decentralized operating

system. The design documents produced to date, in conjunction with the kernel software actually

constructed, together represent a substantial step towards realization of a real-time decentralized

operating system based on objects and transactions. Further progress depends on a combination of

experimentation with concepts proposed in the design documentation and integration of kernel

software with higher level operating system software and resource management strategies. The

Archons project is incrementally achieving the objective of developing a decentralized operating

system that embodies novel concepts suitable for application in Navy real-time command and control

systems.

SECTION 11

6

4. Client Interface Specification

4.1 Overview

ArchOS is the operating system being designed and constructed as part of the Archons research

project. The stated goals of the project are to conduct research into the issues of decentralization in

distributed computing systems at the operating system level and below. In this area, the primary

research issues being investigated within Archons are decentralized control, team decision making,

transaction management, probabilistic algorithms, and architectural support.

It is planned that ArchOS will be developed in three stages. The firt, called the interim testbed

version, is now underway and will handle a small set of Sun workstations1 interconnected by an

Ethernet. It is expected that this operating system will constitute an existence proof of many of the

basic concepts involved in our research as applied to the construction of a decentralized operating

system. This system will later be followed by a more complete testbed operating system incorporating

the lessons learned in the interim testbed construction. Finally, an analysis of the ArchOS structure is

expected to result in the construction of specialized hardware for the purpose of executing a full-

blown ArchOS system, and ArchOS will be rewritten to run on it at that time.

In this document, we describe the characteristics of the interim testbed version of ArchOS currently

being designed. This system is intended to be a vehicle with which these issues can be investigated,

rather than an operational applications programming environment. The client interface, then, must

be have sufficient functional completeness to allow test applications to be constructed with which to

study ArchOS' characteristics, but need not provide a particularly complete set of facilities. The set of

facilities provided, then, will be evaluated with respect to their support of Archons' primary research

goals, rather than with respect to an operationally complete functionality.

Nevertheless, the set of functions described in this document can, and should, describe a sot of

facilities each of which is functionally closed: i.e. each function provided is complete so that its use

can be measured with respect to Archons' research issues. Thus, for example, in the handling of

transactions at the client interface, all of the important issues in transaction management are

covered, even though other functions, such as file management, may be missing or skimmed. It is not

to be assumed that missing or incomplete functionality in the interim tebbed ArchOS represents

valueless functionality, but rather that the issues involved with such functions are not within the

t Sun Workstation is a trademark of SUN Microsystems, Inc.

7

primary Archons research interests. Functionality in such areas is expected to be much more

complete in later versions of ArchOS incorporating the results of the research performed during this

early ArchOS implementation.

This document consists of four chapters. Following this introductory chapter, chapter two will

contain a description of the computational model of ArchOS. This will include the client's view of

application software structure, with a description of the primary ArchOS client facilities, language

issues and the general application software development environment as supported by ArchOS.

Chapter three will describe the operating system primitives, including a brief high level description of

the underlying operating system activities likely to be undertaken in response to each of the

primitives. Particular attention will be given to ArchOS' handling of resource management and

consistency, as well as recovery issues. Chapter four will provide a rationale of the design decisions

described in Chapters two and three, outlining the tradeoffs made in the selection of application

structures and the semantics of the operating system primitives.

4.2 ArchOS Computational Model

In this model, we mix two paradigms in the distributed domain: object-oriented and process-basea

programming. While this mixture is hardly novel (e.g., [Lazowska 811), our paradigm differs from

others in several ways. The primary goal is a high level of modularity and maintainability for both the

real-time application implementer using ArchOS, and for the ArchOS implementers themselves.

4.2.1 Principal Components

The purpose of ArchOS is to provide an execution environment for a real-time decentralized system,

such as a command and control system. The application software of such a system can be

considered to be a single distributed program. The distributed program can be described in terms of

its pnmary constituent components, which can be further broken down until the Idlniiiar sequential

components (processes) are described.

4.2.1.1 Distributed Program

A distributed program consists of one or more arobjects (major program modules .- see Section

4.2.1.2) working toward a single goal. Generally, in a real-time system, the entire system can be

considered to be executing a single such di.stributed program. It is pos;ible, however, that more than

one distributed program could be running in a system simultaneously (particularly during system test

activities), subject to the availability of resources, but the presence of more than one program may

render certain performance specifications untenable b3cause of the associated arbitrarily resolved

8

resource conflicts. Each program contains a single Root arobject which will, in turn, spawn other

arobjects.

In fact, because ArchOS will be a testbed operating system for the foreseeable future, it is expected

to be used almost exclusively in "system test activities". Because of this, we have planned the client

interface to allow more than one program to be executed simultaneously. While it is true that

performance specifications may be compromised during such tests, the majority of such tests may

not be greatly impacted. ArchOS will keep track internally of which program components are part of

each separate program, using a fixed set of policies for handling resource allocation conflicts among

the programs. The remainder of this document, however, will concern itself with the handling of a

single program.

4.2.1.2 Arobject

An arobject is a distributed abstract data type consisting of two principle parts: a specification, and

a body. An instance of an arobject can be dynamically created using the CreateArobject primitive.

More than one instance of a single arobject can be created, each having a distinct identity, forming an

arobject class. The arobject identifier returned by the create primitive identifies the particular

arobject instance to be addressed during communications, or arobject communications may be

initiated to an entire arobject class, using existential or universal quantifiers to specify destination

addressing (see description of Request primitive in Section 4.3.3.1).

The lifetime of the arobject is under user control and is potentially unlimited. The system build

procedures place the uninstantiated copies of the compiled and linked arobjects on long term storage

(e.g. disk), but the creation of an arobject causes an instance of the arobject to be created and

uniquely named. An arobject instance will be removed at the end of its lifetime, or a kill operation can

remove an arobiect instance.

4.2.1.2.1 Arobject Specification

The arobject specification, describing the external user's view of the arobject, consists of a set of

data types and a set of operations which other arobjects will use to activate services offered by the

arobject. The specification, although it completely specifies the external interface to the arobject,

makes no commitment with respect to the number of processes within the arobject, their functions, or

their distribution. The operations are specified in a manner similar to functions in procedural

programming languages: the operation is specified with its name, its input arguments, and its output

arguments. All operation invocations and replies use call.by-value semantics.

It is important to note that there is no defined relationship between an aroblect's operations and the

9

entities (processes or procedures) in its body. Any operation could, in principle, be handled by any

process in the arobject (see description of the Accept primitive in Section 4.3.3.4).

4.2.1.2.2 Arobject Body

The arobiect body consists of descriptions of private data types, private abstract data types, private

operations, private arobjects, and processes. Every arobject body must contain at least one process,

but the other components of an arobject body are optional. This private information is visible only to

processes within the arobject. If a process is not resident in the same node as an instance of a private

abstract data type, the semantics of a call to one of that private abstract data type's procedures are

those of a remote procedure call. The semantics of the remote procedure call will ensure that the

procedure will bo callcd at most oncC; it will be the responsibility of the calling process to handle the

condition of a procedure never being executed.

Thus, there are a number of potential items in the arobject body, each with a set of semantics.

controlling their use. The procedures defined within a private abstract data type will determine the

access rules to the encapsulated private data, handling mutual exclusion if needed, or providing

"dirty" access if this is acceptable to the client system functional specifications. The private data can

be any normal data types, but may also be defined as atomic or permanent. Data defined as atomic

will be forced to stable storage upon commitment of a transaction, ur restored to its prior, oi some

equivalent, state upon transaction abort. Permanent data is similar, except that the copying of this

data to stable storage is done asynchronously (with respect to the changes made to the data) by the

operating system or by an explicit primitive, with no guarantees with respect to consistency. Atomic

data access is possible only within transactions (see Section 4.2.4).

Private operations and private data types are exactly the same as their counterparts in the

specification part of an arobject, except that their existence is invisible outside the arobject; hence

these operations and types may be used only within the arobject. Such operettions and types serve to

enhance the modularity characteristics of arobjects by providing for nesting of distributed abstract

data types. Similarly, private arobiects are simply arobjects which, once instantiated (see

C-eateArobject primitive, Section 4.3.2.1) by an arobject, are visible only to the processes within the

outer arobject. Their existence is unknown to external arobjects, and can be used to hide

implementation details in exactly the same way as normal abstract data types.

10

4.2.1.3 Processes

A process is a sequential execution unit within an arobject; it is the dispatchable entity as viewed by

the operating system. An arobject contains one or more processes, of which one may be named

INITIAL. If such a process exists, it is automatically invoked at arobject creation time (see description

of CreateAroblect primitive in Section 4.3.2.1), providing for initialization of the private variables which

comprise the arobject's state. Processes may share a data object with other processes in an arobject

by encapsulating it as an instance of a private abstract type. Processes may be explicitly created only

by other processes in an arobject: their existence is invisible to processes outside the arobject. Once

created, processes are terminated at their own request, at the request of any other process in the

arobject. or at the termination of the arobject instance.

Processes are lightweight; i.e., no computational state (such as local data) is implicitly transferred to

a process via invocation other than its formal input parameters, so the invocaticri activity can be made

to be procedurally inexpensive, particularly if appropriate hardware support is available [Jensen 84].

There is no necessity that all processes in an arobject be located at a single node. The model does

not even require that processes sharing variables be located at a single node, but the actual

implf mentation might contain such a limitation.

4.2.1.4 Sample Arobject

The structure of a distributed program and each component of an arobject is illustrated in Figure

4-1. The three small boxes in the left portion of the figure represent three cooperating arobjects.

Aroblect 2 has made a Request of arobiect 1, and arobject 1 has sent a corresponding Reply.

Similarly, arobject j nas requested some service from arobject 2 and received a reply.

While the small boxes that represent arobiects in Figure 4.1 hint at the internal structure of an

arobiect (they show that an arobject has two parts and that one part contains internal procenses and

private abstract data types (padt's)), they do not show much detail. The large box on the right side of

the figure is an exploded view of aroblect 2. It shows that the two parts of an arobj..ct are a

specification and a body, and it shows the various components of each part. (These components

were all discussed earlier in this chapter.)

4.2.2 Communication Facilities

Arobiects communicate via invocation parameters and messages. Unlike a remote procedure call

(PPC) mechanism, the requestor and server must agree to communicate -vith each other. Their

relationship is thus a symmetrical pair of cooperating arobjects raiher than that of a mabtc:r/slave.

Such a symmetrical pair can be used to produce either client/server systems, or cocperating 5 rrnblct

11

arobect I Request arobject 2 specification
Data Type Definitions

aE Operation 1

proc Reply Operation 2
*I"Operation 3

process arobject 2 body
Private Data Type Definitions private

Private Operation 1 arobject

Private Operation 2 EERequest arobject 2 proces

patPrivate Abstract Data Type

Reply process process

Private Object Declaration

Jprocess Process 1

&object 3 Process 3

proc Process 2

Figure 4-1: Distributed Program using Arobjects

systems, or more likely, a mixture of both. This view pervades both the application and ArchOS

implementation paradigms being constructed.

In this example shown in Figure 4.2, the requestor sends a request message explicitly via the

Request primitive and the server (i.e., Process A) performs an Accept primitive. The Trans-ld variable

in the requestor is set to the unique request transaction identification if the request initiation is

successful, and is set to a null transaction id ("NULL-TID") if arT errur has bUt:i detected (e.g., invalid

arobject id). The body of the request message must match the correoponding operation parameter

template provided in the target arobject specification, using call-by-value semantics. Similarly, the

body of the reply message contains the operation's return-parameters. If a transaction is in progress

when the request is made, ArchOS will manage the applicable transaction semantics, depending on

the transaction type (See Section 4.2.4).

12

Requestor. Arob ject

Requestor- Process R

Trans.ID = Request(Target-arobject,<operation>,<mtg>,<reply- msg>)

Target-Arobject

Process A
Ioo"t

s tat s =AcceptAny(<operation>,<msg>);

procs-id = CreateProcess(<Process-B>,<msg>);

Process B

Trans.ID = Reply(<req- trans-id>,<reply- msg>);

Figure 4-2: Communication Paradigm in ArchOS

4.2.3 System Load and Initialization

Although system generation is beyond the scope of this document, we will assume that a system of

application arobjects has been built, and that a directory (possibly partitioned) of the arobjects has

also been constructed, and is available to each node. For each distributed program (normally one,

but possibly more than one during test phases), one arobject has been identified as a root arobject.

At system startup, once ArchOS has initialized itself and determined its initial state, the directory will

be searched for every client root arobject, each of which will then be automatically Created, including

execution of its INITIAL process. This action will then complete the system load and initialization, with

or without operator assistance.

13

4.2.4 Transactions

ArchOS will use transactions in order to apply the properties that transactions have traditionally

displayed in database applications (such as failure atomicity and data permanence) within the

operating system. OS-level transactions should facilitate the maintenance of system consistency

while simplifying data sharing among multiple processes. In fact, we expect to use transactions

extensively within the ArchOS system primitives.

The ArchOS transaction facility does not provide failure atomicity and permanence for all of the

data accessed by a transaction. Rather, only the data items that have been explicitly declared to be

atomic have these properties.

4.2.4.1 Elementary and Compound Transactions

ArchOS will support two types of transactions, elementary transactions and compound

transactions, which may be nested in arbitrary combinations. Elementary transactions correspond to

traditional nested transactions [Moss 81]. Compound transactions [Sha 84] are supported by ArchOS

in order to provide more potential concurrency than elementary transactions and differ from

elementary transactions in one important way: when a compound transaction commits, the

processing which makes the effects of the transaction permanent and visible (the commit processing)

takes place immediately. In this manner, a compound transaction is treated as if it were a top-level

transaction, even though it may actually be nested within another transaction.

Compound transactions must be viewed differently than traditional, serializable transactions. In the

traditional case, the transaction writer is able to assume that his transaction will be executed as if it

were the only transaction in the system. The transaction facility will perform whatever concurrency

control is necessary to ensure that the entire transaction will be executed atomically so that no other

transaction can view the partial results of this transaction; other transactions can view only the final,

committed results. I he system thereby ensures that the operations performed on the atomic dutla

objects correspond to some serial ordering of the transactions; this, in turn, guarantees that a set of

transactions which individually preserve the consistency of the atomic objects they access will also

collectively preserve that consistency.

Compound transactions do not allow the transaction writer to act as though that writer's transaction

is the only one active in the system at any given time. Rather, the writer of a compound transaction

must realize that, in essense, a compound transaction allows other transactions to view partial results

of computations. That is, if a compound transction is nested within another transaction, when the

compound transaction commits, it is imolicitly allowing other transactions to view the state of the

14

atomic data objects that it has manipulatcd. Since the outer transaction has not yet committed, this

state may be considered a partial result of the computation being performed by the outer transaction.

(Compound transactions allow partial results to be visible, thus admitting the possibility of side

effects, while providing a means of increasing concurrency in applications where such transactions

can be employed.)

Due to the fact that a compound transaction can allow other transactions to see partial results of an

ongoing computation, compound transactions must be written carefully. In particular, a compound

transaction should perform a consistency preserving transformation on the set of atomic data objects

that it accesses. A consistency preserving transformation is a set of operations that transforms a set

of atomic data objects from one consistent state into another consistent state. In this way, no other

transaction can ever see a set of atomic data objects in an inconsistent state. For applications in

which it is acceptable to allow other transactions to view certain partial results that represent

consistent states for a set of atomic data objects, compound transactions may be used, and an

increase in overall application and system concurrency can result.

The behavior described above has several important consequences for compound transactions:

e It may be impossible to "undo" (in the sense of Moss's nested transactions) the effects of
a committed compound transaction which is nested within another transaction. That is,
in the event that a commited compound transaction is later aborted (due to the abortion
of a higher level transaction which contains that compound transaction), there is no way
that ArchOS can guarantee that the atomic data structures manipulated by that
compound transaction can be restored to the same state that they possessed prior to the
initiation of the transaction. However, ArchOS does provide a method by which an
arobject author can define an operation, called a compensation operation, to be
associated with each operation defined on a given arobject. It is expected that the
arobject writer will write a compensation operation for each arobject operation that could
be invoked during a compound transaction. (In some cases, a compensation operation
will involve more than simply restoring an object to its original state. For example, after a
compound transaction has altered the value of some shared variable, it is possible for
other transactions to read, or even change, that value. Later, if compensation must be
performed for the committed compound transaction (due to the abortion of a higher-level
transaction), it may be necessary to take additional steps to assure that the visibility of the
shared variable's value during the interval between the compound transaction's
commitment and subsequent abortion has not caused any undesiraole side effects. One
possible step, for instance, might involve broadcasting a message to all of the potential
viewers of the shared variable's value, stating that a transaction abort has caused the
value seen most recently to be invalidated.) In the event that one or more arobiect
operations were invoked during the processing of a committed compound transaction
that is subsequently aborted, ArchOS will properly compose the corresponding
compensation operation!; in order to imitate the effects of a traditional "undo" oporation.
These comnensation operations will then transform the states of the atomic data
structures manipulated during the courpound transaction execution into some mer rber of

15

a class of states that are equivalent, although not necessarily identical, to the pre-
transaction states of those data structures.2

Compound transactions can be used to release shared resources before the completion
of an entire nested transaction execution, potentially increasing system concurrency.

Transactions are defined by the arobject programmer by means of ArchOS primitives. These

primitives appear as programming constructs similar to those used to define while and for loops.

Such a syntactic structure allows a transaction to be placed at any point in any process, while

insuring that both the beginning and the end of the transaction occur within a single process.

ArchOS will handle the ordering of compensation operations for aborted compound transactions

automatically. This will be done by constructing a sequence of compensation operations

corresponding to the operations performed during the execution of a compound transaction. In the

event that this compound transaction is committed and subsequently aborted, these compensation -

operations will be performed in the reverse order of the original execution sequence. As explained

above, although ArchOS will initiate the processing of these compensation operations, the operations

themselves must be defined by the author of the arobject whose operations were invoked by the

compound transaction.

The ArchOS client will often need to access shared data during transaction processing. Such

accesses are coordinated by means of a locking mechanism. The client must explicitly request locks

on the shared data objects that are needed for the execution of a givcn transaction. The following

section discusses the ArchOS locking facilities in detail.

4.2.4.2 Locks

ArchOS supports two types of locks: discrete locks on independent, individual data items, and tree

locks [Silberschatz 801, which are structures of related discrete locks. In the case of discrete locks,

the client obtains (sets) a lock for the desired data item, manipulates the item, and releases the lock.

Tree locks are handled in a somewhat different manner. In this case, there is a tree structure of

locks, and there are a few rules that must be followed when accessing the locks. In particular: •

* Initially, a client may set a lock located at any point in the tree of locks.

* Subsequently, a client may set any lock whose parent lock is currently held by that client.

2 Strictty speaking, this is not quite true. In fact, the state of the atomic data structures wilt be ,- imilei n to the 'late that
mou!d have existed had all of the other roncurrent committed transactions taken place in 'hs! bserlte if the ,bo, ,cd
compound transaction.

16

" A client cannot acquire a tree lock, release it, and then reacquire it before all of the
client's locks in that tree have been released.

• Locks may be released at any time, as long as the above conditions hold.

Tree locks have one important property: if all of the locks involved in a set of computations are

contained in a single lock tree and if the above rules are obeyed and if all tree locks are released in a

finite amount of time, then deadlocks involving locks in the tree are impossible.

Within transactions, locks are obtained explicitly by the arobject programmer. When a nested

elementary transaction commits, its locks are passed to its parent transaction; when a top-level

elementary transaction or any compound transaction commits, all of the locks obtained by that

transaction are released. (ArchOS will handle this automatically.) When a transaction is initiated

from within the scope of a higher-level transaction (see next section for a discussion of transaction

scope), ;t does not automatically inherit the locks which belong to its parent transaction. However, it

may attempt to obtain locks held by any of its ancestors by means of the SetLock primitive.

In addition to the lock facilities mentioned above, a primitive is provided to release locks. However,

the Re/easeLock primitive must be used carefully within transactions. Transactions possess desirable

properties as a result of the fact that they restrict the freedom with which the locking and unlocking of

data items can occur. If a client abuses the locking/unlocking conventions employed by the ArchOS

transaction facility by improperly making ReleaseLock invocations, then ArchOS may not be able to

complete the processing of the client's transaction. Rather, ArchOS will detect the violation of the

locking conventions and will terminate the transaction in as orderly a manner as possible. More

precisely. ArchOS will abort the transaction upon detection of a lock protocol violation. This may

result in an inconsistent or incorrect state for some atomic objects. However, since the transaction

can only release locks that it can explicitly name, the integrity of atomic data objects which are

manipulated on its behalf can be guaranteed by appropriate use of transactions to encapsulate these

other atomic data objects. Such an encapsulation will guarantee that the atomic data objects

manipulated by these transactions will be in consistent states and can recover to other consistent

states when the lock-violating transaction is aborted. However, since the lock-violating transaction

has abused the locking conventions, it may be impossible to properly recover the atomic data objects

that it manipulates directly. In that case, ArchOS cannot ensure that these atomic data objects will be

in a consistent state. (See the explanation concerning consistency preserving transformations in

Section 4.2.4.1.)

Despite the warning given above, the ReleaseLock primitive does have "safe" applications. For

17

instance, it can be used to manipulate tree locks or to release locks that were obtained during

non-transaction processing.

4.2.4.3 Transaction Scope, Models, and Lock Passing

This sectio;aefines some additional terminology for discussing transactions and introduces the

notion of a transactionpe, a structure that allows a simple visualization of the relationships among

various transactions. In addition, the rules for lock propagation in the ArchOS transaction facility are

specified in more detail.

The preceding discussion concerning transactions dealt with the notion of nested transactions.

The transaction tree is a 3tructurc that can be used to explain the behavior of a set of transactions.

Figure 4-3 contains an example of a transaction tree.

ET

CTCT CT

arc shows

concurrent
execution

ET: Elementary Transaction
CT: Compound Transaction

ET

Figure 4-3: Sample Transaction Tree

Each circle in the transaction tree represents a transaction execution. (The transaction nodes have

been labeled so that they may be individually referenced later.) Transaction tree nodes that are

children of a given transaction tree node represent transactions that are nested within a parent

18

transaction (that is, either they are contained within the parent transaction's definition or they are

executed as a result of invocations performed as part of the parent transaction). Children that are

connected to their parent by a single line only are executed in a serial order, with the leftmost child

being executed first; children that are connected to their parent by a line through which an arc passes

are executed concurrently. (These concurrent executions are typically the result of executing

RequestSingle or RequestAll primitives.)

Each transaction has an associated scope. That scope is delimited by the transaction definition

primitive. Any statement that is part of the transaction definition is within the scope of the transaction,

as are any statements that are executed as a result of arobject operation invocations or procedure or

function calls made by statements within the transaction's scope. With respect to the transaction tree

representation, all of the subtree at or beneath the node corresponding to a given transaction lies in

the scope of that transaction.

The transaction tree can also be used to explain the ArchOS rules governing lock passing among

transactions. As explained in Section 4.2.4.2, the client explicitly obtains the locks that are required

by a transaction. When a nested elementary transaction commits, all of the locks that it held are

passed to the transaction in which it is nested (its parent in the transaction tree); when a nested

compound transaction commits, all of its locks are released.

The rules that determine which locks a transaction may obtain are more involved. Two transactions

are said to be unrelated if: (1) they are not contained in a single transaction tree, or (2) they are in a

single transaction tree and are concurrently executing siblings or descendants of concurrently

executing siblings, or (3) they are in a single transaction tree in which one is an ancester of the other

and either the descendent is a compound transaction or there is a compound transaction on the path

connecting the two transaction nodes in the corresponding transaction tree. (Note that according to

this definition, a compound child transaction is always unrelated to its parent transaction.) Two

unrelated transactions may compete for locks, and they may hold locks with compatible lock mod.e=s

for a single data object at any given time. However, if they request incompatible lock modes for a

single data object, then one of the competitors will obtain a lock and the other will block until.it can

receive the desired lock, or it will return to the requestor with an appropriate status indication.

Two transactions are said to be related if they are contained in a single transaction tree where one

is the descendent of the other, the descendent is an elementary transaction, and there are no

compound transactions in the path ccnnecting their respective nodes in the transaction tree. The

lock compatibility rules for related transactions are different than thobe fcr unrelatWd transactions. In

19

this case, the descendant transaction can obtain any lock mode for any lock held by a related

ancester in the transaction tree, including incompatible lock modes that would not be allowed if the

transactions were unrelated. (Of course, the descendant transaction will have to compete with all of

the unrelated transactions in the system in order to successfully obtain the requested lock with the

desired mode.)

Examples of both related and unrelated transactions can be found in Figure 4.3. For instance,

transaction 'k' is related to transactions 'i' and 'd,' but it is unrelated to transaction 'a' (due to point (3)

in the above definition of unrelated transactions). Also, while transactions 'f,' 'g,' and 'h' are all

related to transaction 'c,' they are all unrelated to one another (due to point (2) in the above definition

of unrelated transactions). Finally, there are only two other related transaction pairs in the figure:

transaction i' is related to transaction 'd' and transaction 'b' is related to transaction 'a.'

4.2.5 Real-Time Facilities

As previously stated, ArchOS is a real-time operating system; for ArchOS, this statement carries a

number of important implications. In this work, we define a real-time operating systen to be one

which manages its system resources to meet user-defined deadlines. Processes will be scheduled

using deadline-driven scheduling with reference to user-defined policies (See Section 4.2.6). This

means that when the system determines that processing resources are sufficient to meet user

deadlines at each node, it will meet them, but when resources are insufficient, user policy will guide

the operating system in its decisions as to which deadlines should be missed or whether some

processes should be relocated.

Examples of user policies to be implemented in the event of insufficient resources include:

" Minimize average lateness

" Mirimize maximum lateness

" Minimize number of late processes

" Minimize priorities of late processes

In scheduling terminology, these policies actually define objective functions for the resulting

scheduling algorithm(s). Scheduling techniques for some of these objective functions (e.g., minimize

maximum lateness) are well known, while for most others optimum algorithms are known to be

intractable. ArchOS will use best effort decision making to implement policies such as these and

many other similar user policies as closely as possible.

20

In order to handle real-time constraints, each ArchOS primitive must have its execution time

bounded. This bound may be probabilistic, and should be determined with respect to the significant

events or actions involved in fulfilling the request (e.g., maximum number of internode messages,

maximum cpu time used).

The local scheduling model used by each ArchOS node to manage its real-time load consists of a

set of n active processes pi, i between 1 and n. For each pi, a stochastic execution time C and a

deadline T. are known. C. is a value estimated by the process' implementer and measured by the

system during execution. As a part of the set of user controllable policies described above for

handling missed deadlines, a value function Vi will be defined for each processor to determine the

value to the system associated with achieving a particular degree of lateness for process pi. The

value functions themselves are either chosen by ArchOS with reference to the user policies, or may

be provided directly by the user policies, thus creating an extremely large set of potential overload

policies.

The system will continuously monitor its performance with respect to the likelihood of missing

currently known deadlines, using a best effort to arrange scheduling to distribute the lateness should

missed deadlines occur. This processing is currently a critical portion of the Archons research effort,

and the results of this research will be directly applied to this scheduling.

During process scheduling at a single node, an overload condition may be detected in which

deadlines may be missed. The scheduling algorithms, under control of the appropriate policies, may

determine a (sub)set of processes which should be removed from the local node and moved

elsewhere. The decision of where they should be moved will be made by an algorithm to be

developed, also under control of the application defined policy.

Primitives are available for specification of periodic process execution, user specified dalay, rcal

time clock management, and lateness doctrine policy specification. With respect to the ArchO.S

primitives, deadlines are defined by adding the client-defined deadline interval (see Delay and Alarm

primitives, Section 4.3.9) to the request time, which is defined to be: (1) the scheduled periodic

process execution time, (2) the expiration time of a Delay or Alarm primitive currently in progress, (3)

the time at which a new process becomes ready for executiorr following a CreateProcess primitive.

Processes for which deadlines have not been defined, if any, will be scheduled with the objective of

maximum throughput subject to the constraint that deadlines will fir.st be met for processes with

deadlines.

21

4.2.6 Policy Definitions

ArchOS exists to support a distributed (application) program. In order to provide a flexible

environment that the program writer can tailor to satisfy specific application-dependent requirements,

ArchOS allows the client to define the policies used to manage certain system resources.

In general, the ArchOS client may dynamically specify the policy to be followed with respect to the

management of a specific resource. For instance, a process scheduling policy may specify the

manner in which processor time is managed. In order to support a wide range of alternative policies,

some of which may be defined by the client, ArchOS will include a set of mechanisms that will be

combined as appropriate to supply the foundation for the facility that the client has selected.

The Archons researchers are interested in studying the specification of policy by the application

programmer. as well as the separation of policy and mechanism within a given resource management

facility. In ArchOS, the integration of client-selected policies into the system will be studied in two

areas: process scheduling policies and process reconfiguration policies. Process scheduling

policies are discussed at some length in this section to provide examples for the ArchOS policy

definition facility since these ideas have been actively pursued by Archons researchers; process

reconfiguration policies, which govern the dynamic migration of processes from node to node, are

not as well developed and are an area of future research.

Consider the definition of a process scheduling policy by the client. There are two different

situations under which processes are scheduled: the situation in which there are sufficient

processing resources to satisfy all of the client-specified service requests, and the ituation in .vrich

the demand for processing resources is greater than their supply. At this time ArcrhOS policy

management is only concerned with the latter case, and this is reflected in the..c.3ojrt provK1(-e Oor

client-specified scheduling policies.

In the case where the demand for processing resources is greater than tt':tr su;, rw ,.-,'

two options: the client may issue a general policy statement Nhich correspondis . .i pre ., .ctmd

scheduling policy, or the client may define a new policy which adheres to the general model that the

mechanisms underlying the ArchOS process scheduling facility support. These mec ianisrr are

aimed at optimizing the value of a function, known as the ob/ect~ve functon. In Arc"(CS the obiective

function will maximize the sum of a value function evaluated for each runnabiw ;,, ()s or, .1 n

node. Whenever the client selects a pre-defined scheduling pic'y, ArchC, .,iil ' rfnsfurnr this

selection into the appropriate value (and hence, objective) function. in situatio,, n- -re th, int

wants to use a scheduling policy that ArchOS does not "know about," the !int must lh(il,.

22

specify the value function to be used. (The client accomplishs this by means of specifying the

parameters for a value function. Value functions are also discussed in Section 4.2.5.)

The set of pre-defined scheduling policies which may be selected when the demand for processing

resources exceeds the supply includes the following examples (See Section 4.2.5 for a discussion of

process deadlines and real-time considerations, in general.):

" minimizing the number of deadlines missed;

" minimizing the average lateness;

" minimizing the maximum lateness;

" maximizing the minimum lateness;

* minimizing the weighted tardiness. (Tardiness is defined to be non-negative lateness,
and the weighting factor can incorporate process or arobject priorities into the
scheduling computation.)

The implementation 'client policy definition in ArchOS will include the notions of policy names and

a corresponding set of policy modules. For example, Schedule and Reconfigure will be recognized

by the system as policy names and their bodies can be kept as a separate policy module. All of the

client-defined policy modules are maintained by a policy set arobject, which will be instantiated by the

application program. Thus, it will also be possible to add, delete, or change the existing policy

module for a given policy by invoking a corresponding operation of the policy set arobject during run

time.

Each policy module can be built by referring to a set of policy attributes. These attributes are used

to determine the policy to be carried out by ArchOS or to pass information to the policy module so

that it can make a particular policy decision. For instance, the arobject priority and lateness doctrine

parameters listed below could be used by ArchOS to translate ihe clients policy desires into an

oblective function to handle process scheduling.

Inclusion of a policy set aroblect in an application system will result in its INITIAL process being

scheduled during system initialization. This arobject may then define a set of policy attributes for this

program. Some examples of attributes that might be used for the Schedule or Reconfqure policies

are

* Arobject priority -- relative scheduling priority of instances of one aroblect ver.cus
instances of other arobjects in the application program during periods when there are not
enough computing resources to satisfy all demands. It 3hould be nott, that in the,,'_nt

23

of more than one application program running on the ArchOS system, no relative
priorities may be determined between them, so performance of either or both may be
adversely affected. (As stated in Section 4.2.1.1, ArchOS is designed expressly to
support a single program, or set of arobjects. This set of arobjects may well perform
computations that would normally be associated with a number of separate "tasks."
However, as far as ArchOS is concerned, this collection of tasks comprises a single
distributed program since all of the relative priorities among the component arobjects are
defined.)

Lateness doctrine -- rules to be followed in the event that deadlines must be missed. This
doctrine indicates the nature of processing which will characterize degraded modes,
including such possibilities as maximizing the minimum lateness, minimizing the
maximum lateness, minimizing the average lateness, etc. Execution of these doctrines
will be done on a best effort basis utilizing the available information, even though
incomplete or inaccurate, maximizing its value, and making the decision as near optimal
as possible, consistent with the application performance requirements.

4.3 ArchOS Primitives

ArchOS primitives are defined as a set on operations which manipulate various system and kernel

arobjects. The primitives can be classified as system and kernel primitives. The system primitives are

provided by system arobjects which exist above the kernel while the kernel primitives are defined

within a set of kernel arobjects. In this section, we will specify all of the ArchOS primitives (both

kernel and system) which are visible to a client. Other kernel primitives will be described in the

ArchOS System Architecture Specification.

4.3.1 Specification of Primitives

We will use the following format to describe the specification of ArchOS primitives. The

specification of a primitive consists of two parts. The first part describes the functionality of the

primitive, and the second part defines the actual interface for a client process by using a syntactic

template shown in below.

It should be noted that since we adopted a C.like syntax in this document, many style of type

declataions are adapted from C [Kernighan 781. For instance, a pointer called "ptr" to a type, say

"TYPEx", will be specified as "TYPEX "ptr". An optional argument, say arg o , of a primitive will be

indicated by C, arg.J in its argument list.

val0 = Primitive(arg1, ..., arg k)

TYPE0 val0 This indicates that th- "valo" has the type "TYPEo". It also includes the type
definition of TYPE o if necessary.

24

TYPE 1 arg1 This line specifies the type of argument1 .

TYPEk argk This line specifies the type of argument k .

The first line in this template shows that an ArchOS primitive, called Primitive requires k

arguments, such as arg1 , ... , argk, and returns a value.

The additonal part may consists of error or abnormal conditions related to the above primitive

invocation and may have the following explanations.

On Error: This part explains the types of errors that can occur and what values will be returned in

response to an error. In general, a client can get detailed error information by looking at a specific

area called an error block. The error block must be declared by using a SetErrorBlock primitive (see

Section 4.3.11.5).

On Timeout: If a primitive has a timeout argument, then this may explain what happens after a

timeout occurs.

This may also contain extra comments such as follows.

Note: This is an example of additional comments on this primitive.

4.3.2 A robject/Process Management

The arobject and process management provides creation and destruction of arobject instances as

well as process instances. The Cr.at.Arobject and CreateProcess primitives create an instance of an

arobject and a process respectively. Similary, the KilArobject and ;'illProcess primitives kill a sp,-cific

instance.

The lifetime of an arobject instance can vary, is determined by the lifetime of the last active process

instance within that arobject instance. In other words, if an instance of an arobject is killed, all of its

internal processes will he halted and removed. A process may terminate by normal exit (i.e., rea(:hinq

the end of its body) or by an explicit KillProcess primitive.

25

4.3.2.1 Create

A CreateAroolect primitive creates a new instance of an arobject at an arbitrary node or a specified

node. Similarly, a CreateProcess primitive creates a new instance of a process in the arobject. The

selection of a node is made outomatically by ArchOS unless overridden by the Create operation.

Upon arobject creation, the arobject's INITIAL process is automatically dispatched.

An optional set of parameters can be passed to the INITIAL process when the arobject is

instantiated by using an initial message (i.e., "init-msg").

arobject-id = CreateA robject(arobj-name [, init-msg] [, node-id])
process-od = CreateProcess(process-name (, init-msg] [, node-id])

AID arobject-id The unique identification of the instantiated arobject.

PlO process-id The unique identification of the instantiated process.

AROBJ-NAME arobj-name
The name of arobject to be instantiated.

PROCESS-NAME process-name
The name of process to be instantiated.

MESSAGE "init-tsg
A pointer to the initial message which contains initial paramcters for the INITIAL
process.

NODE-ID node-id Node identification (optional). An actual node may be designated, or a node
selection criterion may be designated (e.g., the current node, any node except the
current node, any node, or a specific node).

On Error: If a CreateArobject or CreateProcess primitive fails, a "NULL-AID" or "NULL PID" will be

returned, respectively. The detailed error code can be found in an error block which is defind by

issuing a SetError8lock primitive. (see Section 4.3.11.5).

4.3.2.2 Kill

The KillArobject and KillProcess primitives remove a process and arobiect instance respectively. An

arobject may be killed only by one of its own processes (suicide allowed, no Murder). In urder to kill

another arobject, the target arobiect must have an appropriate operation defined within its

specification so it can kill itself.

26

A process can be killed only by a process which exists in the same arobject instance.

val = KillArobject(aid)
val = KillProcess(pid)

BOOLEAN val TRUE if this killing was successful; otherwise FALSE.

AID aid The arobject id of the target arobject to be killed.

PID pid The process id of the target process to be killed.

On Error: !f the specified arobject does not exist in the system, or a target process does not exist in

the requestor's arobject instance, a "FALSE" value will be returned.

4.3.2.3 SelflD and ParentlD

The SelfAid primitive returns the requestor's arobject id and the ParentAid primitive returns the

parent's arobject id of the specified arobiect. The Se/fPid primitive returns the process id (pid) cf the

requestor and the ParentPid primitive returns the parent's pid of the the specified process.

aid = SelAid0
paid = ParentAid(aid-x)
pid = SelfPido
ppid = ParentPid(pid-x)

AID aid. aid-x, paid The arobject id.

PID pid, pid-x, ppid The process id.

On Error. !f a non.existing aid or pid is given to ParentAid/Pid, a "NULL-AID" or "NULL-PIl" will be

returned.

4.3.2.4 BindName

Any aroblect or process can have a (run time) reference name defined by these binaing primitives

within a single distributed program. The BlndAroblectNarme and BitdPro, Psse mr' nrimitives hind

the requested instance of an arobiect or process to a reference name. Unless an Untwd primitive is

executed, the lifetime of a binding is the same as the lifetime of an arobject or process instance.

27

This binding allows an arobject or a process to have more than one reference name, or a single

reference name can be bound multiple arobject or process instances.

To cancel the current binding, a process must use the appropriate unbind primitive.

valul. BindA ro bjectName(aid, arobj-refname)
val = Bind ProcessName(pid, process.refname)

BOOLEAt val TRUE if this binding was successful.

AID aid The arobject id.

PID pid The process id.

AROBJ-REFNAME arobi-refname
The requested reference name for an arobject given by aid.

PROCESS-REFNAME process.refname
The requested reference name for a process given by pid.

On Error: A "FALSE" value will be returned in the case of an error. For instance, if a client attempts

to bind non-existant arobject or process instance to a reference name, a - value will be

returned.

4.3.2.5 UnbindName

The UnbindArobjectName and UnbindProcessName primitives release the current binding between

the specified instance of an arobject or process and a reference name.

val = UnbindA robjectName(aid, arobj-refname)
val = UnbindP rocessName(pid, process.refname)

BOOLEAN val TRUE if this unbinding was succ.essful; otherwise FALSE.

AID aid The arobjE t id.

PlO pid The process id.

AROBJ-REFNAME arobl-refname
The requested reference name for an arobject given by aid.

PPOCESS-REFNAME process-refname
The requested reference name for a proces3 given by pid

28

On Error: A "FALSE" value will be returned, if a client attempts to release the binding for a

non-existing reference name.

4.3.2.6 FindID and FindAlilD

A FindlD primitive returns the unique id (i.e., aid or pid) of the given arobject or process in a specific

search domain. A search domain can be specified with respect to all of the internal arobjects,

external arobjects, a local node, a remote node, or a reasonable combination of among four. If more

than one instance uses the same reference name, the unique id of any one of them will be returned. A

FindAllD primitive, on the other hand, roturns all of the aid's and pid's which correspond to the given

reference name.

aid = FindAid(arobj-refname [, preference])
pid = Find Pid (process- refname [, preference])
aid-list = FindAllAid(arobj-refname [, preference])
pid-list = FindA IIPid (process-refname [, preference])

AID aid The arobject id.

PID pid The process id.

AID-LIST aid-list The list of corresponding aid's.

PID-LIST pid-list The list of corresponding pid's.

AROBJ-REFNAME arobj-refname
The reference name of related arobject(s).

PROCESS- RFNAME process-refname
The reference name of related process(es).

PREFERENCE preference
The preference can specify a search domain such as "INTERNAL",
"EXTERNAL", "LOCAL", "REMOTE", "INTERNAL-LOCAL", "INTERNAL.
REMOTE", "EXTERNAL.LOCAL", "EXTERNAL-REMOTE".

On Error: If the FindAid or FindPid primitive fails, a "NULL-AID" or "NULL-PIO" will be returned

respectively. If a FindAll primitive fails, a "NULL-AID-LIST" or "NULL PID-LIST" will be returned.

29

4.3.3 Communication Management

The communication management provides an inter- and intra-node communication facility among

cooperating arobjects. A process can invoke an operation at a specific instance of an arobject by

sending a request message or can invoke the same operation at multiple instances of an arobject

which have been bound to a single reference name. In the later case, the multiple computations are

performed concurrently.

In particular, a process can send any arobject instance a request message to invoke an operation

without knowing its actual location. A process can also invoke a private operation which is defined

within its local arobject.

There are essentially three types of primitives to provide flexible cooperation among arobjects:

Request, Accept, and Reply. In addition to these, the RequestAll, RequestSingle, and GetReply

primitives are added in order to interact with multiple instances of arobjects concurrently. All of the

communication primitives are executed as transactions so that ArchOS can provide properties such

as failure atomicity and permanence. (see Section 4.3.6).

A message consists of a header and a body. The message header will be generated by ArcrOS and

contains control information. The message body carries all of the parameters and will be set by the

client process. Since each arobject has a separate address space, parameters must be sent using

call-by-vaiue semantics.

4.3.3.1 Request

The Request primitive provides remote procedure call semantics in which the requesting process

invokes an operation by sending a message and blocks until the receiving aroblect returns a reply

message. Identically, if the receiver arobject is the same arobject, a local operation will be invoked.

fhen the reply is generated, it is sent to the requostor which is then unb!ccked. If the requesting

process needs to limit the allowed response time, it may do so by creating a small procpss to handle

the timeout conditior,.

trans-id = Request(arobj-id, opr, msg, reply-msg)

TPANSACTION-ID trans-id
The transaction id of the transaction on whose behalf the request is teing made.

AID arobj-id The unique id of the receiving arobject.

OPE-SELECTOR opr
The name of the operation to be performed.

30

MESSAGE "msg A pointer to the message which contains the parameters of the operation to be
performed. The message to the destination arobject must not contain any
pointers (i.e., call-by-value semantics must be used).

REPLY-MSG "reply-msg
A pointer to the reply message.

On Error: The Request primitive may fail in the following situations:

" The destination arobject's node is not available.

" The destination arobject does not exist.

" The target operation is not defined.

* The request message does not match the receiver's message type.

If the Request primitive fails, a "NULL-TID" will be returned.

4.3.3.2 RequestSingle and RequestAll

The RequestSingle and RequestAll primitives can send a request message and proceed without

waiting for a reply message. The RequestSingle primitive provides nonblocking one-to-one

communication and, the RequestAll primitive supports one-to-many communication. The requesting

process may thus invoke an operation on more than one instance of ar arobject or process with one

request. To receive all of the replies, the GetReply primitive may be repeated until a reply with a null

body is received.

trans-id = RequestSingle(arob-id, opr, msg)
trans-id = RequestAll(arobj-refname, opr, msg)

TRANSACTION-ID trans-id
The transaction ID of the transaction on whose behalf the request is being made.

AID arobi-id The ID of the receiving arobject.

AROBJ-REFNAME arobj-refname
The reference name of the receiving arobject(s).

OPE-SELECTOR opr
The name of the operation to be performed.

,MESSAGE "mtg A pointer to the message which contains the parameters of the operation to be
performed. The message to the de:stination aroblect must not contain any
pointers (i.e., call by value semantics must be used).

31

On Error: The RequestSingle and RequestAll primitives fail if similar to those situations mentioned in

the previous section happen. If the RequestSingle or RequestAll primitive fails, a "NULL-TID" will be

returned.

4.3.3.3 GetReply

The GetReply primitive receives a reply message which has the specific transaction id generated by

the preceding RequestAll primitive. If the specific reply message is not available, then the caller will

be blocked until the message becomes available.

aid = GetReply(req-trans-id, reply-msg)

AID aid The arobject id of the replying arobject.

TRANSACTION-ID req-trans-id
The transactiow id of the corresponding RequestSingle or RequestAll primitive.

REPLY.MSG =reply-msg
A pointer to the reply message.

On Error: The GetReply primitive fails, if the specified transaction does not exist; a "NULL-AID" will

then be returned.

4.3.3.4 Accept and AcceptAny

The process responsible for an arobject operation receives a message using the Accept primitive.

Using the selection criteria specified, the operating system selects an eligible message from the

arobject's input queue and return3 it. The procoss operatc. on tho message, responding with a reply

when processing has been completed. If no suitable message is in the request rnes.agde queue, then

the caller will block until such a message becomes available.

The AcceptAny primitive can receive a message from any arobject instance with any operation (i.e.,

"ANYOPR") or a specified operation request. The primitive can return the requestor's transaction id,

specified operator, and requestor's aid. The Acccpt primitive can receive a message from a specific

requestor arobject and returns the requestor's transaction id and the requested operator.

32

(req-trans-id, req-opr, requestor) = AcceptAny(opr, msg)

(req-trans-id, req-opr) = Accept(requestor, opr, msg)

AID requestor The aid of the requesting arobject.

OPE-SELECTOR opr, req-opr
The name of operation to be performed. The "opr" parameter can be a specific
operation name or "ANYOPR".

TRANSACTION-ID req-trans-id
The transaction id of the transaction on whose behalf the request is made.

MESSAGE Omsg A pointer to the message buffer.

On Error: The AcceptAny primitive fails if the specified operation does not exist. Similarly, the

Accept primitive fails if the requestor or the operation does not exist. If the AcceptAny or Accept

primitive fails, a "NULL-TID", "NULL-OPR", and "NULL-AID" will be returned.

4.3-3.5 CheckMessageQ

The CheckMessageQ primitive examines the current status of an incoming message queue without

blocking the caller process. The primitive must specify a message queue type, either "request-

queue" or "reply-queue". The request-queue queues all of the non-accepted request messages and

is allocated for each arobject instance. The reply-queue maintains all of the non-read reply messages

and is assigned to every process instance.

A message can be selected based on the sender's arobject id, operation name, and/or transaction

id. If more than one argument is given, only messages which satisfy all of the conditions will be

returned. If no corresponding message exists in a .specilied message queue, a "NULL-PON 1TER" will

be returned.

ptr-mds = CheckMessageQ(qtype, requestor, opr, req-trans-id)

MSG-DESCRIPTORS °prt-mds
Pointer to a list of the message descriptors selected by the specified selection
criteria.

MSG-Q qtype This indicates either "request-" or "reply-" message queue.

AID requestor The aid of the requesting arobject.

33

OPE-SELECTOR opr
The operation to be performed. The "opr" parameter can be a specific operation
name or "ANYOPR"

TRANSACTION-ID req-trans-id
The transaction id of the corresponding RequestSingle or RequestAll primitive.

On Error: The CheckMessageQ primitive fails if the specified message queue, operation, or the

transaction id does not exist. If the ChecxMessageQ primitive fails, a "NULL-POINTER" will be

returned.

4.3.3.6 Reply

After processing an Accept primitive, a process must use a Reply primitive to send the completion

message to the requesting process. At the requestor's site, the completion message is received by

the second half of the synchrouns Request primitive or the GetReply primitive. It should be noted that

the reply need not necessarily be sent from the same process which accepted the operation. In other

words, the requestor's transaction id is used to determin a proper reply message.

trans-id = Reply(req- trans-id, reply-msg)

TRANSACTION.ID trans-id
The transaction id of this Reply primitive (not the requestor's transaction id)

TRANSACTION-ID req-trans-id
The transaction id of the request that has been serviced.

MESSAGE "reply-msg
A pointer to the reply message.

On Error: The Reply primitive fails if the specified transaction has already been aborted. If the Reply

primitive fails, a "NULL-TID" will be returned.

4.3.4 Private Object Management

A process can dynamically create a private object, which is an instance of a privato abstract dzita

type defined in its arobject, at any node. If a private abstract data type has instances of atomic or

permanent data objects, the actual data objects will be allocated in non-volatile memory

34

4.3.4.1 Allocate/Free Object

An AllocateOblect primitive allocates an instance of a private abstract data type at any node and a

FreeObject primitive deallocates the specified instance.

object-ptr = AI oc ateO bject(object- type, parameters [, node-id])

val = FreeObject(object-ptr)

OBJECT-PTR object-ptr
A pointer to the allocated private data object.

OBJECT-TYPE object-type

The object-type indicates the name of a private abstract data type.

BOOLEAN val TRUE if the object was released successful; otherwise FALSE.

NODE-ID node-id Node identification. An actual node may be designated, or a node selection
criterion may be designated (e.g., the current node, any node except the current
node, any node, or a specific node).

On Error: If the object-type is not defined an AIIocateObject primitive fails and returns a "NULL-

POINTER". If the object-ptr is not pointing to a proper permanent object, then the FreeObject

primitive fails and returns "FALSE".

4.3.4.2 FlushPermanent

A F/ushiPermanent primitive blocks the caller until the specified data object is saved in non-volatile

storage.

FlushPermanent(object-ptr, size)

OBJECT-PTR object-ptr
A pointer to the permanent data object.

INT size The number of bytes which must be flushed into permanent storage.

On Error: The FlushPermanent primitive fails if the specified object does not exist.

35

4.3.5 Synchronization

ArchOS provides two levels of synchronization facilities. One, the critical region, is for controlling

the concurrent access to a single shared object within an arobject, while the other, the locak, is for

controlling accesses from concurrent transactions.

The critical region scheme should be used when the shared object does not need to provide failure

atomicity. That is, a client may be able to access an inconsistent state of the object. On the other

hand, if these objects are atomic objects and are accessed from transactions. then a client must be

allowed to see only consistent objects. In the critical region scheme, mutual exclusion is achieved by

impiicit locking by using an event variable, while the transactions require an explicit lock on the

atomic object. The CreateLock and DeleteLock primitives are provided to create and remove a lock

for the explicit locking scheme. Actual locks can be set by using a SetLock or TestandSetLock

primitive and can be released by using a ReleaseLock primitive.

4.3.5.1 Region

The Region construct provides a simple mutual exclusion mechanism for controlling concurrent

accesses to shared objects. A timeout value must be specified in order to bound the total execution

time in the critical region including any time spent waiting to enter the region. If a timeout occurs, a

client process is forced to exit from the critical region and an error status is returned.

Region(ev, timeout){ ... }

EVENT-VAR ev The event variable consists of a waiting queue of client processes and an event
counter.

TIMEOUT timeout The timeout value should indicate the maximum execution time for this critical
region including the waiting time.

On Timeout: A client should be able to check whether the critical region was exited due to a timeout

by checking error information in its error block (see Section 4.3.11.5).

4.3.5.2 reateLock and DeleteLock

The CreateLock primitive creates either a tree-type or discrete-type lock and returns a unique lock

id. Since a lock id is not bound to any data object explicitly, a client must be responsible for Utiliz=isng

the lock in accordance with the locking protocol. The DeleteLock primitive removes the .pccified

lock from the system.

36

newlock-id = CreateLock([parent-lockid])
val = DeleteLock(lockid)

LOCK-ID newlock-id
A new lock id will be returned.

BOOLEAN val TRUE if the lockid is removed successfully; otherwise FALSE.

LOCK-ID parent-lockid
If the created lock must be a tree-type lock, then its parent-lockid must be
specified. If the parent-lockid is a "NULL.LOCK.ID", then the new lock will be the
root of a new lock tree. If a parent-lockid is not given, then the new lock will be a
discrete-type lock.

LOCK-ID lockid The lockid to be deleted. If the lockid is a tree-type lock, then the entire subtree of
which this lock is the root will be deleted.

On Error: If a parent lockid does not exist, then the CreateLock primitive fails and returns a "NULL-

LOCK-ID". A DeleteLock primitive fails if the specified lockid does not exist, and returns "FALSE".

4.3.5.3 SetLock, TestLock, and ReleaseLock

The SetLock primitive sets a "tree-type" or "discrete-type" lock on arbitrary objects by specifying a

lock key and its mode. If a requested lock is being held, the caller will block until it is released. The

TestandSetLock primitive also tries to set a lock, however, it will return a "FALSE" if the lock is being

held. If the request lock is a tree-lock type, then the SetLock and TestandSetLock primitives may also

fail due to the violation of the tree-lock convention (See Section 4.2.4.2).

The TestLock primitive checks the availability of a specified lock with a lock mode. In the case of a

tree lock, it also checks whether the locking would be legal in the corresponding lock tree. The

PeleaseLock primitive can release the lock on an object which was gained by the SetLock or

TestandSetLock primitive explicitly-.

sval = SetLock(lock-type, lockid, lock-mode)
sval = TestandSetLock(lock-type, lockid, lock-mode)
tval = TestLock(lock-type, locKid, lock-mode)
rval = ReleaseLock(lock-type, lockid, lock-mode)

INT sval 1 if the specified lock is set; 0 if the lock is not set. A negative value will be
returned if an errcr occured.

37

INT tval 1 if the specified lock is being held; 0 if the lock is not being held. A negative
value will be returned if an error occured.

INT rval 1 if the specified lock is released; 0 if the lock is not released. A negative value
will be returned if an error occured.

LOCK-TYPE lock-type
The lock type can be either "TREE" or "DISCRETE".

LOCK-ID lockid The tockid indicates the unique id of a lock.

LOCK-MODE lock-mode
The lock mode can be "READ", "WRITE", etc.

On Error: An error may occur if a non-existent lock id or lock mode is used for the above primitives.

A detailed error condition, such as a non-existent lock or lock mode, is available by looking at the

caller's error block (see Section 4.3.11.5).

4.3.6 Transaction/Recovery Management

ArchOS can allow a client process to create a compound transaction or an elementary transaction

which can be nested in any combination. By using nested elementary transactions, a client can use a

traditional "nested transactions" mechanism. In addition to this, the compound transaction provides

a mechanism which can commit the transactions at the end of the current scope without delaying the

commit point to end of the top-level transaction. Since a completed nested compound transaction

cannot be undone, ArchOS provides a mechanism to perform corresponding compensate actions

automatically (see Section 4.2.4).

It should be noted that ArchOS cannot generate such a sequence of compensate actions

automatically. However, ArchOS provides a mechanism to execute the defined compensate actions

in the proper sequence to make the status of each affected atomic object into a member of an

equivalence class of its correct "pre-execution" state. (See Section 4.2.4.1)

4.3.6.1 Compound Transaction

A compound transaction construct creates a new transaction scope in a client process. Within this

scope, a client can access atomic objects as if these computational steps were executcd alone.

When a compound transaction starts, no locks will be inherited from its parent transaction if one

exists. That is, all of its locks must be obtained within this scope by means of the SetL ccA primitives.

(See ' Section -13.5 3), t owever, at the onid of1 11w rcoopoid tra.,;tiOii !ioi- A, ih(: ; rc'lc -. -ill

of the locks for this trans~action mitonlatic.ally It i.' lI.;o) op;niblo to riflow,'w lock-i I Iore tie' i In if it!

transaction scopo by using at 1h?va;ro primitive Ixphii;ly,

IfI a compound t Iransaction :nU~t abo rt. it t i(i~ I t raris~ac tior primitive (-;et- Sod ton 4 3 6.4 i to tit fin,

the necessary compensate actions, break-, the current trailsa(tion %cope, and piv;!-es mililtill to flit!

end of the transaction scope.

GT(timnoi it) (. tIratrmarti()n ;tops>

TIMF timfiout I hr tincut vAIluiriQ a' the maximrnui tiliftimne of flt!, S u'ipoinitl tr ir '' iior

(ir ariaction jtsbpv,_* Atomic rcjc 'ctn (,an only bei mCcw',-;r'rl andI attort~id, withlinr thwc;r'to r;m icii.il5

rOn rtrinorit. The cur renit tratnsaction and ill of itOr, id tr ansctiona will hol ahorti d . I hat I--.

Arc hOS) will sixerI to all of the netcessary cornpir'iate ;ict ion-, andh und o. Alt(er rcomplr'tio (A11r tli-ms

actio n-, the s~tatu,, of atornic)tllOCtSShim3 51011 [W COWiritofit .)ill hFe iiii of the rnr'iiri o fi~t)

wiiivaIlrir c/a:.. of its pre (trans~action) ox".cution ,,tate.

4.3.6.2 Elamontary Transaction

Arn elerrreritary tranr~action conntruct alno cri?,itorm a new tr;imis;i;tioF1scp inl a r.i icett' i;'~

Within thi9 nwopo-i d Cint can iccr'1S *Itolilic olc!t-i ;m if thrc;o rnmpuittiorial 'ei cl*c'~~ic

alone

When an Oti'iicritmiy trairsamction ;tart!;, it i;;m iobtain Rt, mic.e,trirtrmiiriri Y itfl v;c i~ll

ancestor mhat .I. tii" v~iomim'itary tranisnaction nmy accl..cs oib~i ioct5 Whicht wfr'rr iiidllilill.ilc'i h y

tht- hirItlwr l.!vs't tr;Iri.i(:Ion.. Illce aricgnfor lilii 111)1 Iit'd .II lilirto c m I. Iit- i1101 fili(.Il)It l'. vilt tir

visil to thin transamltion At Ill$? c'nrt1 it an1 e'1luri'iry tifiilx.t1Imlilir~i) All I i: ,N1it prq..11. .1ill

Ifn locks1 tnot fi. igmcnt trais.tioim if onto'~r~ If fhic c'lc'rric'riary I ir.rtiii.lc iilr ~

trarmaction. thsmt aill of itn lock.s will it, Ic'p~ctit this; pruilt midc .11l cit 0t%.t~ii iicit;'v~

corniittod.

It .n cc ii'i~r tntisiitru ficii, .it)cir, iii1 11t'rr,?I i 1 i'. i l in iliiiiitli r (111 1n 1rtci)

poe'florii hll$;.i' 111li' ilr i', Ic ,1 the' lilitl Ii Ir.i i ll '. rr1w, .11 1) 1 i*i

cisrtorir itmul to flietc'rl of iit-I ii.cici ~~ 1 c

39

ET(timeout){ . (transaction steps>. .

TIME timeout The timeout value indicates the maximum lifetime of this elementary transaction.

<transaction steps> Atomic objects can only be accessed and altered, within these transaction steps.

On Timeout: The current transaction and all of its child transactions will be aborted. That is,

ArchOS will execute all of the necessary undo and compensate actions automatically. After

completion of these actions, the status of all affected atomic objects should be consistent and be

"identical" to the correct initial (pre-execution) states.

4.3.6.3 SelfTid and ParentTid

The SeifTid primitive returns the id of the current transaction and the Parert Tid primitive returns the

parent transaction id of the given transaction id.

mytid = SelfTidO
ptid = ParentTid(tid)

TIL mytid The id of the current transaction.

TID tid The id of the specific transaction.

TID ptid The parent's tid of the given transaction "tid".

On Error: If the ParentTid primitive fails, a "NULLTID" will be returned.

4.3.6.4 AbortTransaction

The AbortTransaction primitive aborts the specified transaction and all of its child transactons

within the same transaction tree (See Figure 4-3 in Section 4.2.4.3). If the transaction that invokes the

Abort Transaction primitive does not belong to same the transaction tree as the transaction which is to

be aborted. a client cannot abort that transaction. This primitive executes all of the necessary "undo"

or "compensate" actions, based on the transaction type, and breaks the current transaction scope

After completion of these acticns, the status of all affected atomic objects will be .'jnst';tpni ,d

returned to either "identical" to or "a member of the equivalence class" of thesir initi;ii pr,, ,XUcLtut()

states.

40

The Atortlncomr,/etel-ransaction primitive also aborts all of the outstanding incomplete

transactions which had been initiated by an outstanding RequestSmgle or RequestAll primitive. In

other words, all of the nested transactions which belong to the specified request transaction but have

not yet completed (committed) will be aborted.

val = AbortTransaction(tid)
val = AbortlncompleteTransaction(req-tid)

BOOLEAN val TRUE if the transaction was aborted successfully; otherwise FALSE.

TID tid The id of the transaction.

TID req-tid The transaction id of the RequestSingle or RequestAll primitive.

On Error: If an Abort primitive is called from a transcation which is not a parent of, or identical to. the

designated transaction, the primitive will fail and return FALSE.

4.3.6.5 TransactionType

The T-ansactionType primitive returns the type of the given transaction (a compound or elementary)

and also indicates the transaction level.

trantype = TransactionType(tid)

TRANTYPE trantype
The type of the given transaction, such as "CT", "ET", "Nesed CT, or 'Ne.tad
ET"

TID tid The id of the transaction.

On Eor- If there is no specified transaction in its transaction tree, the TransactionType primitive

fads and returns "NULL-TRAN-TYPE".

4 3.6.6 IsCommitted

The sCommitted primitik-? checks whether the given transaction is already comnrltd or not.

val = IsCommitted(tid)

BOCLEAN val TRUE if the specified transaction was comrnittW. f.lh,.r.vise FALE.

41

TID tid The id of the transaction.

On Error: If there is no specified transaction in its transaction tree, the isCommtted primitive fails

and returns "FALSE".

4.3.6.7 IsAborted

The IsAborted primitive checks whether the given transaction is already aborted or not.

- val = IsAborted(tid)

BOOLEAN val TRUE it the specified transaction was aborted; otherwise FALSE.

TID tid The id of the transaction.

On Error: If there is no specified transaction in its transaction tree, the IsAborted primitive fails and

returns "FALSE".

4.3.7 File Management

Viewing a file as a set of long term persistent data, it is clear that an arobject can also fulfill this role.

To create a file, an instance of the appropriate arobject can be created, and the filename can be

bound to it. To erase the file, the Kill primitive will serve. Reading from and writilg to the file can be

performed using the appropriate operations of the arobject itself. Similarly. control functions (e.g.

backspace, random placement, search) become operations of the arobject. The data to be stored in

the file is merely contained in one of the arobject's private data objects. If this private data object is

declared to be atomic, then the file will be treated as an atomic file and all of the file accesses must be

performed from within a transaction scope.

4.3.7.1 File Access Interface

In order to avoid the low level (bare) access to a file aroblect (i.e., an explicit invocatiop of an

operation on a file arobject), ArchOS provides the following set of primitives which support

conventional file access and control functions.

The CoenFde primitive opens a specified file with the given access mone. and the (. ,:;',)-,ie file

pr'mitive dloses the file. The ReadF;le and WrdteFile primitives provide a 7,;mple b',jte !;trn'."

orented read and write access to a file. respectively. The Cr,,t-e pr rmitive crelt;s I f[ile. ,f ,, (jive

42

file type and the DelcI'eF.Ie primitive deletes a file, The SeekFile primitive moves the current reading

or writing position to a specified by bytelocation In the file.

fd = OpenFile(filename, mode)
val = CloseFile(fd)
nr = ReadFile(fd, but, nbytes)
nw = WriteFile(fd, but, nbytes)
val = CreateFile(filename, filetype)
val = DeleteFile(filename)
pos = SeekFile(fd, offset, origin)

FILEDESCRIPTOR "fd
A pointer to the file descriptor.

BOCLEAN val TRUE if the specified operation is done successfully; otherwise FALSE.

INT nr The actual number of bytes which were read.

INT nw The actual number of bytes which were written.

FILENAME filename
The name of the file.

ACCESSMCDE mode
The mode for accessing the file. (e.g., "READ", "WRITE", "APPEND",
"READLOCK", "WRITELOCK", etc).

FILE-TYPE filetype The type of the specified file such as "ATOMIC", "PERMANENT" or 'NORMAL".

BUFFER *buf The buffer address.

INT nbytes The number of bytes to be read or written during a Read or Write operation,
respectively.

LONGINT pos The current pointer's position in the file in bytes. If the seek -iction is done
successfully, the value of pos must be a positive riteger otherwise. 1

FILEOFFSET offset The offset value from the given origin point, in bytes.

FILEORIGIN origin The origin indicates the origin of the seek operation. (At the beginning, the
current position, or the end of the file).

On Error: If the file does not exist or the file mode is not supported. then the C(De-F ;(, primitive fail,,

and returns "NULL-FILE.DESCRIPTOR" If the file descriptor is not an (jocned (,';cr~ptor, toln i

43

close or read/write action fails and "-1" will be returned and a detailed error condition will be also set

in the caller's error block. If a create/delete action fails, then "FALSE" will be returned and a detailed

error condition will be also set in the caller's error block. If the specified file does not exist or the

value of offset or origin is not in the proper range, "-1" will be returned and a detailed error condition

will be also set in the caller's error block.

4.3.8 I/0 Device Management

A normal I/0 device access protocol should be similar to the file access protocol described in

Section 4.3.7. To read, write or send a special command, the target device must be cpened. Once all

actions are done, it must to be closed. All device dependent commands can be sent to devices by

using the SetlO Control primitive.

At the lowest level, I/0 control and data transfer will be handled according to the hardware

interface definition (e.g., memory read and write to memory mapped devices). The IOWait primitive

can be used to wait for an interrupt from a particular device; at most one process may 'Wait for a

particular device interrupt at one time.

4.3.8.1 Basic I/0 Device Access Interface

Typically, access to a device is performed by the following primitives. If a device is not readable or

writeable, then a special SetlOiControl primitive (see Section 4.3.8.3) must be used.

dd = OpenOevice(device.name, mode)
val = CloseDevice(dd)
nr = ReadDevice(dd, buf, nbytes)
nw = WriteDevice(dd, buf, nbytes)

DEVDESCRIPTOR "dd
A pointer to the device descriptor.

BCCLEAN val TRUE if the specified operation is done successfully: otherwise FALSE.

INT nr The actual number of bytes which were read.

INT nw The actual number of bytes which were written.

DEVNAME device.name
The device name.

,!COESSMODE node
The access mode of the specified device such as 'READ '. "WRITE". -t-.

44

BUFFER 'buf The buffer address.

INT nbytes The number of bytes to be read or written during a ReadDevice or WriteDevice
operation, respectively.

On Error: If the device does not exist or the device mode is not supported, the OpenDevice primitive

fails and returns "NULL-DEV-DESCRIPTOR". If the device descriptor is not an opened descriptor,

then a close or read/write action fails and "- 1" will be returned, a detailed error condition will be set

in the caller's error block.

4.3.8.2 lOWait

The /OWait primitive blocks the requestor process until the specified device completes an I/0

action.

event-cnt = IOWait(dd, timeout)

INT event-cnt An event counter which indicates the number of basic I/O actions performed. If a
negative number is returned, it indicates an error state.

DEV-DESCRIPTOR dd
The device descriptor.

TIME timeout The timeout value indicates the maximum execution time of this I/0 function.

On Error: If the device descriptor is not an opened descriptor, a wait action falls, "-1" will be

returned, a detailed error condition will be set in the caller's error block.

On Timeout: If an IOWait primitive cannot complete within the spec:fied timeout value, a negative

value will be returned.

4.3.8.3 SetlOControl

The SetlOControl primit le sends device control information to the specified device. it also receives

status information from the device.

val = SetlOContro(dev-descriptor, io-command, dev buf, timeout)

B1OLEAN val TRUE if this SetlCControl succeeded; otherwise FALSE.

45

DEV-DESCRIPTOR *dev-descriptor
A pointer to the device descriptor.

10-COMMAND io-command
The io-command indicates a device-specific control command.

DEV-BUF "dev-buf The dev-buf indicates a pointer to a buffer which will be filled with device status.

TIME timeout The timeout value indicates the maximum execution time of this I/0 function.

On Error: If the device descriptor is not an opened descriptor, then a control action fails and

"FALSE" will be returned and a detailed error condition will be also set in the caller's error block.

On Timeout: If an SetlOControl primitive cannot complete within the specified timeout value, a

negative value will be returned.

4.3.9 Time Management

In ArchOS, the time management hot only provides a basic access to the system real time clock

which is maintained in non-volatile storage, but also supports primitives which provide the basic

functions of the time-driven (process) scheduling.

The GetPealTime primitive obtains the system's current real time clock value, while the

GetTimeDate primitive fetches the current absolute time and date. The Delay primitive delays the

caller's execution for the specified time period. The Alarm primitive also postpones the caller until the

specified time of day and date. The Delay and Alarm primitives provide aperiodic time dependent

processing control, while periodic repetitive processing will normally be controlled using the Policy

primitives (see Section 4.3.10).

4.3.9.1 GetRealTime

The GetPealTime primitive returns the current real time clock value in microseconds.

rtc = GetRealTimeO

REALTIME rtc Value of current real-time clock in microseconds. This valije may be u:;ed to

compute time values for use in delay or alarm primitives.

46

4.3.9.2 GetTimeDate

The GetTimeDate primitive returns the current absolute time and date. The time value accuracy will

be limited by delays in the calibration entry performed by the application, and cannot be expected to

return exactly the same value simultaneously at every node. ArchOS will maintain this information on

a best effort basis.

(time, date) = GetTimeDateO

TIME time Value of current time of day in microseconds from midnight.

DATE date Julian date of this day.

On Error: If the SetTimeDate primitive operation has not been executed since the s;Ystem was

initialized, the date value returned is zero.

4.3.9.3 Delay

The Delay primitive delays a specified length of time (in microseconds), then returns the current

date and time when the delay has been completed and execution has resumed. This primitive can

also be used to specify a deadline, by which time a deadline milestone must be reached, as well as an

estimate of the amount of processing time that will be required to reach the deadline milestone.

(ArchOS may also make estimates about this processing time based on observations of earlier

executions.) Finally, the client may use the Deay primitive to mark the arrival of the process at the

deadline milestone referred to as the current deadline (while optionally defining the next deadline

milestone).

(time, date) = Delay(delaytime, deadline, util, dlflag)

REALTIME delaytime
Time to be delayed starting at the present time, in microseconds. No delay if this
value is not positive; in this case it replies immediately.

REALTIME deadline
Elapsed time in microseconds from delaydme by which the deadline milestone
must be reached. If this value is not positive the deadline remains unchanged.

REALTIME util Estimated execution time of this process in microseconds vhich will be required
before the deadline is reached. If this value is 0 or less, the current processing
time o.stimate remains unchnned. The u'..,; of this valije by ArchOS 1, lind hy
the policy mechanism (see Section 4.2.6).

47

TIME time Current time of day in microseconds since midnight.

DATE date Julian date of this day.

BOOLEAN dlflag Client sets to "TRUE" if this call is intended to mark the arrival of this process at
the milestone referred to as the current deadline.

On Error: If the SetTimeDate primitive operation has not been executed since the system was

initialized, the date value returned is zero.

4.3.9.4 Alarm

The Alarm primitive waits until the specified time of day and date, then replies with the current time

and date. If the specified time has already passed, it replies immediately. (The accuracy of the day

and date is as described in the GetTimeDate primitive above.) Like the Delay primitive, the Alarm

primitive can also be used to specify a deadline, by which time a deadline milestone must be reached,

as well as an estimate of the amount of processing time required to reach the deadline milestone.

(ArchOS may also make estimates about this processing time based on observations of earlier

executions.) Finally, the client may use the Alarm primitive to mark the arrival of the process at the

deadline milestone referred to as the current deadline (while optiondily defining the ntext deadline

milestone).

(time, date) = Alarm(alarmtime, deadline, util, dlflag)

REALTIME alarmtime
Time and Date at which processing of this process is requested to resume.

REALTIME deadline
Elapsed time in microseconds from delaytime by which the deadline milestone
must be reached. If this value is not positive, the deadline remains unchanged.

REALTIME util Estimated execution time of this process in microseconds which ,vill be required
before the deadline is reached. If this value is 0. the current processing time
estimate remains unchanged. The use of this value by ArchOS is defined by the
policy mechanism (see Section 4.2.6).

TIME time Current time of day in microseconds since midnight.

DATE date Julian date of this day.

BOOLEAN dlffg Client sets to "TRUE" if thi- cail is intended to mark the irrival if thi . l)rCciSS -It
the milestone referred to as toe current di:!adline.

48

On Error: If the SetTimeDate primitive operation has not been executed since the system was

initialized, the date value returned is zero.

4.3.9.5 SetTimeDate

The SetTimeDate primitive sets the current absolute time and date. The date will be written into the

ArchOS data base and continually adjusted by ArchOS. ArchOS will maintain this information on a

best effort basis. This primitive should be used only once, when the application is initiated.

val = SetTimeDate(time, date)

BOOLEAN val TRUE if time and date were set; otherwise FALSE.

TIME time Value of current time of day in microseconds from midnight.

DATE date Julian date of this day.

On Errcr: If the time and date were already set by this primitive, they remain unchanged, and val is

set to "FALSE".

4.3.10 Policy Management

In ArchOS, a policy management is carried out by a policy set arobject and a set of policy modules.

The policy set arobject must exist in a distributed program and maintain a directory of the policy

modules. The actual policy will be implemented -s a separate policy module in ArchOS. A set of

policy attributes are also maintained by the policy set arobject and ArchOS and will be to referred by

the policy modules.

A SetPolicy primitive specifies a new policy module to carry out a designated policy in the

applications's policy set arobject. If no SetPolicy primitive is invoked, ArchOS provides a default

policy module for the application program. A SetAttribute primitive sets an attribute into a new value.

val SetPolicy(policy-name, policy.module)

val = SetAttribute(attr-name, attr.value)

BOOLEAN val TRUE if the specified policy was set properly; otherwise FALSE.

49

POLICY-NAME policy-name
The name of the policy to be set. (Well-known name to ArchOS, such as
SCHEDULE.)

POLICY-MODULE policy-module
The name of the policy module which contains the policy.

ATTRIBUTE-NAME attr-name
The name of attribute to be set.

ATTRIBUTE-VALUE attr-value
The actual value for the attribute.

On Error: If there is no policy name or policy body, the SetPolicy primitive fails and a "FALSE" will

be returned. The SetAttribute primitive fails if a specified attribute is not defined or inappropriate

values is assigned.

4.3.1 1 System Monitoring and Debugging Support

ArchOS provides system monitoring and debugging primitives in order to control the complexity of

application development in i distributed environment. A system monitoring facility can provide for

tracking the behavior of arbitrary arobjects or processes in the system. The communication activity

among arobjects can be also monitored by intercepting the selective message.

4.3.1 1.1 Freeze and Unfreeze

A FreezeAllApplications primitive stops the entire activities of caller's application, and a FreezeNode

primitive halts all of the cleint's activities in a specific node. To resume client's application,

UnfreezeAIlApplications or UnfreezeNode wil be used.

A FreezeArobiect primitive stops the execution of an arobiect (i.e., all of its processes), and a

FreeseProcess primitives halts a specific process for inspection. An UntreezeArobject and

UnfreezeProcess primitive resumes a suspended arobject and process respectively. While a process

is in a frozen state, many of the factors used for making scheduling decisions can be st-lectively

ignored. For instance, a timeout value will be ignored by specifying a proper flag in the Freeze

primitive.

50

val = FreezeAIIApplicationso

val = UnFreezeAIIApplicationsO
val = FreezeNode(node-id)
val = UnfreezeNode(node-id)
val = FreezeArobject(arob-id [, options])

val = UntreezeArobject(arob-id [, options])
val = FreezeProcess(pid [, options])

val = UnfreezeProcess(pid [, options])

BOOLEAN val TRUE if the primitive was executed properly; otherwise FALSE.

NODE ID node-id The node id indicates the actual node which wil be stopped.

AID arobi-id The unique arobject id of an arobject instance.

PID pid The process id of the target process.

FREEZE.OPT options

The options indicate various selectable flags such as a timeout freeze/unfreeze
flag.

On Error: An error condition, such as non-existent node id, arobject id or pid, will be noted, and

detailed information regarding the error status will be available by looking at the caller's error block.

If the target node, arobject, or process is already unfrozen, then the Unfreeze action .-ill be ignored

and FALSE will be returned along with the appropriate error information is in the error block.

4.3.11.2 Fetch and Store Arobject and Process' Status

A Fetch primitive inspects the status of a running or frozen arobject or process in terms of a set of

frozen values of private data objects. The specific state of the arobject or process will be selected by

a data object id. The state includes not only the status of private variables, but also includes process

control information.

fval = FetchArobjectStatus(arobi-id, dataobj-id, buffer, size)
sval = StoreArobjectStatus(arobi-id, dataobj-id, buffer, size)
fval FetchProcessStatus(pd, dataobi-id, buffer size)
sval = StoreProcessStatus(pid, dataobl-id, buffer, size)

tNT fval The actual number of bytes twhich were fetched.

lNT sval The actual number of hyte Nhich wjere stored.

AID arobj-id The unique id of the arobiect instance.

51

PID pid The process id of the target process.

DATAOBJ.ID dataobj-id The dataobj-id indicates the private object or system control status of the

target arobject/process.

BUFFER *buffer A pointer to the buffer area for storing the returned data object value.

INT size The size indicates the buffer size in bytes.

On E-ror: An error condition, such as non-existent arobject id or pid, will be noted, and detailed

information regarding the error status will be available by looking at the caller's error block. If the

fetched data object is larger than the specified buffer size, then the content will be truncated. For the

storing operations, the data object size must be equal, otherwise the value will not be replaced.

4.3.1 1.3 Kill Arbitrary Arobject/Process

A GlobalKill primitive can destroy an arbitrary arobject or process in the system.

nproc = GlobalKillA robject(arob-id [,options])
val = GlobalKillProcess(pid)

INT nproc The actual number of killed processes.

BOOLEAN val TRUE if the specified process was killed; otherwise False.

AID arobj-id The unique id of the arobject instance.

PID pid The process id of the target process.

GKILL-OP options The options indicate various control options. For example it can indicate
whether the caller stops every time after killing a single process or not.

On Error: An error condition, such as non-existent arobject id or pid, will be noted, and detailed

information regarding the error status will be available by looking at the caller's error block. 'If ihe

target arobject or process was already killed, then no action will be performed and "FALSE" will be

returned

52

4.3.1 1.4 Monitor Message Communication Activities for Arobject/Process

The CaptureComm primitives capture on-going communication messages from the specified

arobject or process. A CaptureCommArobject primitive captures all of the incoming request and

outgoing reply messages to a specified arobject and can select a target message based on the name

of the operation. A CaptureCommProcess primitive captures all of the incoming messages and

outgoing reply messages for

The WatchComm primitives are similar to CaptureComm primitives except that all of the monitored

messages are duplicated, not captured.

val = Captu reCommA robject(arob-id, commtype, requestor, opr)
val = CaptureCommProcess(pid, opr)
val = WatchCommA robject(arob-id, commtype, requestor, opr)
val = WatchCommProcess(pid, opr)

BOOLEAN val TRUE if the monitoring action was initiated successfully; otherwise FALSE.

AID arobi-id The unique id of the arobject instance.

PID pid The process id of the target process.

MSG-Q commtype This indicates either "REQUEST" or "REPLY" type.

AID requestor The aid of the communicating arobject.

OPE-SELECTOR opr
The operation to be performed. The "opr" parameter can be a specific operation
name or "ANYOPR".

On Error: An error condition, such as non-existent arobjoct id or pid, will be noted, and detailed

information regarding the error status will be available by looking at the caller's error biock.

4.3.11.5 SetErrorBlock

A SetErrorBlock primitive sets an error block in a process's address space. A user error block

consists of a head pointer and a circular queue. The head pointer contains a pointer to ..w entry

which contains 'he latest error information in tme circular queue. After the execution of :!hw prwi ive,

a client can access the detailed error information from the specified error block.

It should be noted that the 3eiErrcrt!ock primitive will be ex(ecuted at the pr;,ess crentri t ime (irl

the library routine), -o that the system default error block will br. set nu1,tcmatc;Illy

53

val = SetErrorStack(errblock, blocksize)

BOOLEAN val TRUE if the error block is set successfully; otherwise FALSE.

ERROR-BLOCK "errblock
The address of error block.

INT blocksize The size of error block in bytes.

On Error: If the address of the error block is not valid, then the primitive rails and i-eturns FALSE.

4.4 Rationale for the ArchOS Client Interface

This chapter is organized in parallel with the organization of the first chapters of this document. A

rational approach to reading this chapter would be to remove this chapter from the document placing

it side by side with the remaining sections of the document and then reading it in parallel with the

points made in the remaining sections.

4.4.1 Introduction

The preceding sections describe in some detail the specifications for the ArchOS client interface.

Most spe¢c:ficaticn documents would end here having as completely as possible specified the

operations and the expected responses of the operating system. This specification, and others like it.

however, embody the results of a large number of decisions. This chapter is des.gned to describe the

rationale for the decisions made. Obviously not every decision can be completely described here. It's

entirely possible that there will be a number of important decisions wh:ch we will not describe, but our

a tempt ;s to dcscribe all those trade-offs that we have consciously made ,!th respect to the over,21i

functions involved. We will try to identify alternative configurations that we had discusc:ed and will try

to identify the reasons for the particular decisions made.

4.4.2 ArchOS Computational Model

The rationale for this section must perhaps be the most incomplete, since there are of course. an

large number of choices one can inake for the computational rnmiel of a clIrt,(d systemn

Distributed ystems have been built using models varying from systems built on a tar 'nftjur.ition

where one nodei is ccmpletely in charge of the system and the others ojper3tc n aI;iv , itionshrp

to autonomous systems: networks of multiple processors ti.,;d togqth,.r and .:nm r , tc :~ulv,

54

either a common problem or a large set of disjoint problems. The purpose of ArchOS is to build, as

we have stated, a distrrbuted computer (i e.. a set of processing nodes which, operating together, act

as a single functional entitv to solve a particular application problem) Thus we needed a

computational model that would reflect the unity of purpose inherent in such a concept.

In addition, we were concerned with the software engineering aspects of the application design. In

many existing real time systems (uniprocessors as well as multiple processor systems) we find that

there is a strong tendency to design the application software along the lines of the operating system

interface, thus causing application partitioning to occur in the program at points that do not

correspond to the application problem itself. This effect is perhaps most clearly illustrated with a

standard Navy real time operating system in which each event must be handled by a user process

specifically designed to handle the event. Thus a single process may not handle both time and I/0

events, and sequential I/0 operations must be performed by separate process invocations, resulting

in a ver disjoint (and non-moduiar) program structure. This creates a problem with the reliability and

maintainability of the application system. Although ArchOS is not a production system, we expect

that eventually a production system will be built along the lines explored by this Archons research and

therefore 'Ne would like to start with a computational model which will lend itself to good software

engineering practices. In today's technology we felt this included first of all the need to define the

application as instantiations of abstract data types, but here we wanted to ensure that the abstract

data types we produced could exploit our distributed environment.

It is also true that in existing real time systems, and particularly in command and control systems

such as /de are considerng for our target applications, the programs are frequently ver/ large and are

constructed by large teams of programmers. We would like to have a computational mcdel which

would allow not only good software engineering practices with respect to small programs (i.e.,

programming in the small), but also with respect to the problems of building software in the lar(;e.

Hence, we have chosen a large primary entity for our computational model, the uroblect. The size of

the arobject and its clean interface lends itself to a reasonable organization of software engineers for

development purposes. In addition, the arobject to aroblect interface from is sufficiently -irnpl to

allow a software engineering organizational break out along aroblect lines. This is intendnd to

simolify not only the software develcpment of a highly modular application, but also the test ir d

evaluation phase of such a large system.

55

4.4.2.1 Principal Components

Clearly, our choice for the top level principal component (i.e., the distributed program), is a natural

one in light of the fact that the Archons project is producing a distributed computer and an operating

system for that computer. We see the distributed program as being a single entity with respect to its

overall function, although it is made up of a number of much smaller components. We have chosen

not to be concerned with the execution of more than one distributed program, although we have not

prohibited it since more than one distributed program may need to be present during application

testing. It may be argued that we are merely playing with words here, and in a sense we are, but the

only distinction betveen a single distributed program and more than one is that resource allocation

priorities between aroblects in the distributed program are defined, but resource allocation priorities

between arobjects in different distributed programs cannot be determined. So it is possible to take

two programs which are disjoint and merge them together by defining these interrelationships.

Clearly, although wve do plan to be able to operate ArchOS in an environment with more that one

program running, we cannot claim that resource management decisions will be made fairly between

the two systems.

As we have stated, the arobject is a distributed abstract data type. We have taken from the Ada

mcdel the concept of a separated specification and body. Similarly, the specification section is the

only portion which is visible in the computational sense from one arobject to another. We see the

arobject as a distributed abstract data type which can be instantiated more than once in the

distributed system.

We should note that an instance need not be resident on a single node. We felt that tying the

instance of an arobject to a given node would render inflexible the potential use of an arobIect to

handle a distributed abstract data type. The decision to limit objects to a single node has been made

in the design of a number of systems, such as the Eden system [Almes 831, in which an Eject

(conceptually somewhat similar to an aroblect) must be entirely resident on a single node. Obviously,

the decision to be resident on a tingle node has the advantage that a common -iddress space can be

used for the entire object. We felt that not requiring the entire arobject address space be contained

on a single node would give u-. great flexibility in application design, so we deliberately chose not to

require such an organization.

R' allowng more than one ,nstarice of a givnri -iroblect. thus to be bo' md to .i crnq., r-

name. yje have made it possible for .I higher levo ,roblect to .,ompletely h.,indt ,i ,ii trmui,. * I ab-;trict

data t'pe. One could ,nvilon. for ,"yarnple. a i :itially repl it,2d iire(.t()ry , ;i j or i ilmil r of

nodes or pn-sibl/ thv f.ntire set of nodes in .i dci!tribnited! h'item it t, i" hlw mi l, !. ..l .1 111il

956

it object (I I, t)luttei I over thait notIwork. I Io if pecIf i (At Ioil po Iton Ii lo1u t II f", Ith ''I "t Ir IIt 0,If t: i to ,Uc II

,I oroup. of dfobp'f(tb fy exterim;l ;irobt~c-cV;. but procosso'. WItinII thes ohps't Itselff i.-in (Iiiiricnato

with fi-ach Other across lit, vairiouis i 104 h ', rei.;an d Ier, of the nodo hoondi r Iure-; ()hiviok:,ly, tll!

performance Of ';Aich at ';ylitem11 Must he taken' into act.oun t aiind the alr oiijei wilt haVs? option11 at tiS

listantiation timetl with r espP(;t to ensuririq that part ictilar -Xuhuonponoo t:; (procv-;r;e!-. pm i vatr iWstradt

dfata type Instances, and rn on) are residont on c;ommon noden or snpdt'lle flocle!S' its dictaited by It!;

rhs- Arc fit *-, fill jtin lirrie j;oinef of the4 .Irfit)l'' Iffeotif? IAH A(IfI I li I'', W, Ii

chosen at flti, point to miake very' simploI Oiur conlcept of ths? file3 3steTii hy .3iiiiply i isii ifj pf'i rlIii nit

instances of flifp amrititectsz [A lines, 8,31 ",uc Ih arrjbiects (;ar he inntat iteitd or killied ;I- reotir d aini filhe

s:'t of their permanent aroblect d's then he?.r nne,, in ;lec, dimectory Of till file' hiljei I'fept om the(

-ystem Thp operationsir of thwwi- aiiohisict:.N"i; (prov~1. ii fli, riiiive; riiimr,,o (,(I',', rilt',

iodate and (lelpli' the data within the arnhiect. We would -nvision . howevewr, thait fliit il1 in ehilfr I!'

would be permanently instantiated. In ta ,qiitq a ni inbhem of thoem nirmilit hibp s int t" fiIuIIIj ther

7'jse start* up operation and(would rte Iot orn,tiCaIIIY when the pmnj rain i,-I' trmi rilte I for 'iniy

reasnn such as by poworino- off the rsy';torn. Thun, ain arohltect mIt mii iq jlit iis'vfen have a

pprmanent form in sexintm~1ie

The arobtect hodly ir, intfendrf I to implelment tht, operations descmbth(Ii flt? jrf-ihl, I -I''(1 di~tiiii.

It should be? noted that thp private ;ihstract data tyjpes i':nnpri-v? ther only form oif har''of !ti hiltiitw*'r

proces,!,Ps within an arobltec rhisin me Ir ;vi'-;il ;ihrf. iii lta tyleswhi W i 11 iit;IIII II (f14'tl i''ff

arvl which carln hin fmoaiilln'-Id Only via thsu retiii'r po lirsIn fte ibt f fIIlal typ"

I I ir; ilati it) a'toliic on perrmanefnt data within .k pI~rva.l, m di t il types .1l11W". f iiiil r .1(i""

to sharncl data, Archi()3j will nrjir thtf -iiiy p~rocedure'; wlil 1If .1c'": torlif. f.0.1i[liii ".1 hvea

tr~michi(n rjui' ItI Ilu tirynii of~r'~ I ImI , Anr() I! Ill) I iiitio IIi, lIII' f14 ft tilit- .111(l Ivlwo'i

tim trarisnnctionr i-, omnyit r ihorttrf, A\rt Ii()",ill #'iviml Mi ot itIll .11m, -ff kl III * fif ll(ii'fit)f

.ipp~rni~jtiatrtahl. *.tnirarjn IN'c ;lsii riiti Ill-it ui.iiJ"r f ()Ill .Iilolljfq t 'fi-liliilui if'ffffl ti

priv.0t I' dta nanm ho portifuniiiei I 1lni fill IIl lle tInt'.I. .11111ifiiiflhi a i 1h il iil1.11 1 f o l'.itf 1i.ti f.i' 1 (ili.

typr? inistanti.ition immust be folly refmetit rini aI -timili nod Ill li t"i; 'N. 11IM1 fSfIf I(" 1 11111 111

%ermariticn, inicfudiinr pm.ifiittm poianqilfIlv V 1ifiil. will iel i itf fillflifllf) f'.. 1 .till((I4 1f4, It(- Imil fiuhf

Ifriv ite rir ~o .gtfliiltI tio Iliii sinlil Ill if If' I " it'i4 lf 1';I il 1 . 1 ff 111i11 111(1 1~ 11f 1-i .1.14 I I I I/ i O II

N.vj NIll .illuiA III; iff dim'(fly~ stffil l '11i ' .11 I i f ti .Ilit'f l1)1111, .iliif 41 , .1'. .1 1, 11f 1 jII !'.II i t l qI

.irit Il f.11 1. .111 s* '.Iiiiii 'if -. ii1 i ini fiii#if~ Itif i 4 li Iff,' fimiff I il Alip-44ff !f' A , it Ih , It I f4fill

A\t flii-. pinit. flit ii-; rifA'f t~tte. , ff44 ffIt.ifii'41 I)Ifi i1)/4) II' .w 1.01 'If. !1

57

arobiect and the processes defined in an arobject body. It's anticipated that one or more processes

in each arobject body will run continuously, pausing from time to time to check for the existence of an

operation request from another arobject. If such a request is not found, that process could block

awaiting another such request. Thus, the operation can be handled by any process within the

arooiect, which allows us to have a set of processes with essentially identical function, handling

operations in any manner that the application desires. The binding between these operations, then, is

late and is handled dynamically by the appropriate processes. If, of course, the designer wants to

couple the processes to the operations he need only specify his Accept parameters to identify which

operations he wishes to accept at each point and therefore he can bind them as early as he wishes. A

cost of this approach is that the potential implementation error of omitting the handling of some

operation in an arobject cannot be detected at system generation time, but we feel that the benefit in

terms of modularity and concurrency greatly outweighs this problem.

Processes within an arobject, of course. may communicate by using the CreateProcess primitive to

create -rocesses and passing parameters at that time, or they may invoke operations within the

aroblect using a Request primitive, using either operations from the specification part, or private

operations from the body. These private operations are designed to make it possible to place

operation requests into the incoming queue from internal processing which are separable from those

placed by external arobjects. Obviously processes within an arobject can also communicate via

shared data, using the private abstract data types. Any scheduling or mutual exclusion which must be

handled with respect to this shared data would be handled within the abstract data types.

In addition.we have allowed for inclusion of private arobjects to be defined vithin the body of an

arobject. Such a private arobject will not be visible to external arobjects, and could be used for

partitioning operations within an abstract data type. This technique could be used for an

implementation of a partially replicated directory by placing each partition in its own arobjt.ct and

using the outer aroblect to distribute the lookup and scheduling for the arobjects containing the data.

(See Apoendix A Solution 2.)

One may, of course, question our contention that these processes are lightweight as we have

defined th- m; that their scheduling overhead will be small relative to the speed of the machine. This

iS certainly our intention, but we will have to weigh this against the implementation requirements to

obtain the interfaces we need. It is our intention, however, to minimize the lIate r;cQuirom to be

constructed in the scheduling of a process. In addition, we ?nvision eventually bui dinq ,pc:al

purpose hardware for hosting ArrhO.'. one oblective of which Nil be to optimize the crxati (n of

processes and the re',ultintj context swap overhead.

58

4.4.2.2 Communication Facilities

4.4.2.2.1 Rationale for Accept/Request Rendezvous Mechanism

The Request/Accept/Reply primitives were selected to provide the means of communication

among aroblects. These primitives allow communicating arobjects to rendezvous, rather than

providing a master/slave relationship for all communications.

The master/slave paradigm was rejected because it seemed too restrictive. Consider that a major

goal of ArchOS is to support decentralized resource management by collections of resource

managers, which negotiate to reach a consensus regarding a particular management decision. The

communications involved in carrying out negotiations among resource managers are not

master/slave in nature; they are better characterized as communications among peers.

The Request/Accept rendezvous captured this sense of peer communication- -in order for

communication to taKe place, both parties involved must explicitly act; the requestor cannot force a

process to perform an Accept for a particular invocation.

Both blocking and non-blocking request primitives are provided to give the client a very flexible

communication facility.

4.4.2.2.2 Rationale for Broadcast Request Capability (RequestAll Primitive)

The RequestAll primitive provides the capability to broadcast a request to multiple arobjects. This

feature of the inter-arobject communication facility was very directly shaped by the anticipated

structure of ArchOS' internal distributed data entities.

It is assumed that the ArchOS operating system will make use of various data objects that must be

highly reliable and available. Such objects can be constructed by means of data replication and

distributicn throughout the operating system, with appropriate use of the ArcOS tr-nsartinn

facilities. !n addition, ArchOS will almost certainly contain multiple instances of various servers (for

instance, file servers and name servers). If data is either partially or completely replicated at multiple

locations or if replicated servers are available at multiple locations, it seems natural to use broadcasts

as a common mode of communication involving these replicated entities. For example, a new entry in

a name table might be broadcast to all of the arobjects that contain a portion of that name table. Each

partially redundant table fragment could then be updated appropriately.

59

4.4.2.2.3 Rationale for Intra-Arobject Request Capability

Despite the number of communication primitives provided by ArchOS, we wanted to keep the model

of communication among entities as uniform as possible. As a consequence, ArchOS does not

support a direct process-to-process communication capability. All processes communicate only with

arobjects, by means of the Request/Accept mechanism, even when a process wishes to

communicate with another process in the same arobject. (This restriction is a consequence of the

fact that we do not want the user of an arobject to know about the implementation of another arobject

(including the number of processes and the process id's in that other arobject). The arobject

operation invoker can only see the specification, not the implementation. of the arobject to be

invoked. Therefore, process-to-process communication between two distinct arobject instances is

not possible. And in the interests of uniformity and simplicity, we also decided not to allow such

communications to take place within a single arobject instance.)

In order to allow processes in a single arobject to perform additional operations, beyond than those

that are visible to other arobjects, it was necessary to provide an additional set of operations that can

only be invoked by the processes in that arobject. These operations are called the private operations

of the arobject, and they are invoked in exactly the same manner as operations on other arobjects.

4.4.2.2.4 Rationale for Invocation Parameter Passing

ArchOS Request parameters are passed to the receiving arobject using call-by-value semantics.

This is the only reasonable way to pass parameters since arobjects do not share any address space.

The only exception to this rule comes in the case of an invocation by a process of a private

operation. In that case, the processes can have intersecting address spaces due to the presence of

shared private data (in private abstract data type instances) in the arobject. As a result, it is possible

for such Request and Reply messages to contain references to common objects (for example, the

names of private data type instances).

4.4.2.3 System Load and Initialization

The tradeoffs involved in this section are fairly simple. We expect that the system would be loalded

in a conventional manner from external storage (e.g. disk) associated with some of the nodes in the

system, and we expect that nodes not containing local external storage would obtain load data from

neighboring nodes. We expect this to he an internal ArchOS design decision. which will therefore be

specified at a later time.

The question to be answered in this section is how the application program "ould be initiized

once ArchOS is fully initialized and has determineu its own status. We have taiacri the [,omition at this

60

point that an application program will do this by the definition of a unique application arobject (the

Root arobject), which ArchOS will expect to find on one or more nodes. This arobject will then

determine its own status, including finding out if other copies of itself exist (or insuring its own

uniqueness if needed). This arobject will then Create the other arobjects needed to bring up the

application program.

This is a simple approach which has been planned to maximize application program flexibility at

initialization time, and to eliminate the need for operator intervention other than that required by the

application itself.

4.4.2.4 Transactions

ArchOS is a highly decentralized, real time operating system designed to support highly

decentralized, real time applications. In fact, the operating system itself can be viewed as a highly

decentralized, real time application built on top of the kernel support facilities. We have attempted to

view ArchOS in this way at various times, and that has led us to view the arobject as a computational

entity that we would use within ArchOS (insofar as possible), as well as at the application level. While

specifying the services to be provided by ArchOS and its behavior under all conditions, it became

apparent that ArchOS' internal system data objects should possess several characteristics. In

particular, the following characteristics were desired:

" Often, several different arobjects will operate on specific data items (directories, queues,
and so on). These shared data objects will reside in an arobject, so access can be
coordinated by the normal arobject communication facilities (particularly Accept
primitives), as well as by means of customized code in the arobject's processes. But, as
the ,ollowing points will illustrate, a higher level coordination will often be desirable.

" At times, it is necessary to change several different, yet related, data items as a unit (for
example, updating all of the copies of an entry in a partially replicated directory or moving
an element from one queue to another). If such atomic updates could be performed, then
it would be much easier to transform one consistent state of a set of data items to another
consistent state.

" Some data items must be permanent; that is, their state should be reliably maintained for
the life of the system.

These attributes could all be provided by ArchOS by means of the communication facilities in

conjunction with custom-written code and appropriately defined locks or semaphores and critical

regions. However, we desired a more structured approach. All of the above capnbilities arm

supported by traditional database transaction systems [Gray 771. In fact, such trancaction systems

can provide even more powerful properties (specifically, failure atoinicit/ ind/or .serializiibility) It

was felt that this additional structure would ease the programmer's burden, while ak;o dtccrc;isinJ thc

61

chances for programming errors, by making modular programming more natural. (Indeed, the use of

compound transactions promotes modular construction of programs by causing the transaction

author to think in terms of consistency preserving transformations on sets of atomic data objects,

thereby causing the program's data to be partitioned into a number of modular atomic data sets.

Also, transaction systems in general can aid the programmer in another important way: the

processing carried out in order to commit or abort a transaction can handle a great deal of lock-

related bookkeeping, even though the programmer must explicitly obtain locks on all of the atomic

data items. This frees the programmer to consider the correct behavior of the transactions being

written, without giving unnecessary consideration to interactions with other transactions in the

system. However, this is not to say that the programmer does not have to be concerned at all with

locks and locking protocols; rather, it is intended to point out one aspect of lock management that the

programmer does not have to handle. Using the current ArchOS locking protocols, there are still a

number of decisions concerning locks that the programmer must make--for instance, whether to use

a discrete locking protocol or a tree locking protocol, how to organize the locks in a lock tree. vihat

data items are associated with a given lock, and so on. Section 4.4.2.7 deals with some of these

issues in more detail.)

The above discussion explains why a transaction facility was included for use within ArchOS. Since

the ArchOS clients are also interested in producing highly decentralized, real time programs, it .vas

felt that it was appropriate to extend these primitives to the clients as well.

Of course, there are arguments against using a transaction facility within an operating system. One

major oblection is that system performance could be greatly reduced (as compared to a system that

does not use a low-level transaction facility). This is due to the fact that occasionally the system will

have to suspend the processing of a specific transaction while data is being copied from main

memor/ to a (virtually) permanent medium; there will also be overhead associated with the initiation

and conclusion of each transaction. (The impact of mutual exciusion on system performance is not

mentioned in the preceding discussion since some form of mutual exclusion must be present ;n any

system containing shared data objects, whether it includes transactions or not.)

It seems inevitable that a performance pefialty will be incurred by the use of transactions, but it is

hoped that the gains in the area of data permanence, system consistency, high availability, and

reliability will be worth the price. However, three other decisions were made to address the problem

of performance losses due to the use of transactions in ArchOS:

e not all processing must take place within transactions.

62

* only specifically designated data items would be defined as atomic -that is, only those
items would be permanent, failure atomic, and so forth. (This decision forces the
arobject writer to explicitly indicate which data items must be atomic and has a great
influence on the types of steps that appear within a transaction. For instance, it v ild be
a questionable. if not wrong, programming practice to use non-atomic variables to pass
values from one nested transaction to another. An example illustrating this point is
shown in Section 4.4.3.5.)

* a new type of transaction, the compound transaction, is included to increase the potential
degree of system concurrency.

4.4.2.5 Rationale for the Inclusion of Compound Transactions

Compound transactions addressed two great concerns regarding the use of transactions, both

within ArchOS and by ArchOS clients. One of these concerns, performance, has already been

mentioned. Since ArchOS allows transactions to be nested arbitrarily (interleaving elementary and

compound transactions as desired), the use of some compound transactions can increase system

concurrency. This is due to the fact that compound transactions release all of the locks that they, or

any of t' r child transactions, have set at the completion of the execution of the compound

transaction. Thus, the resources that are controlled by these locks are often free to be used by other

processes prior to the completion of all of the processing associated with a given transaction.

The second concern addressed by compound transactions in ArchOS is that of system integrity and

liveliness. In traditional database systems which support nested transactions, all of the locks

obtained by chi!d (nested) transactions are passed to their parent transactions and kept until the

comp!etion of the highest level transaction (at which time the transaction is either aborted or

committed). This approach was not suitable for ArchOS. where most of the operating system

primitves are actually expected to be implemented using transactions. If a client transaction

contained operating system primitive calls which were implemented using traditional nested

transact1ons, then on the completion of the primitive call, the client transaction would receive any

locks that the system primitive transaction(s) had obtained for system resources. The client could

subsequently attempt to manipulate the system resource or could simply hold the lock on the system

resource for an arbitrarily long time. Both of these possibilities were disturbing; but, both were also

preventable by proper use of compound transactions. If each ArchOS primitive is not just a

transaction, but rather a compound transaction, then no locks on system resources will ever be

returned to the client trinsaction. In this way, comonund transactions are used in ArchOS to build a

"firewall" between the operating system and the client.

Of course, compound transactions have some disadvantage.s associated ,'ith them as well. For

instance, it is not possible to simply change :n irbitrary ot.inorntary tr,7n'cticn to a :omp(und

63

transaction without consideration of recovery issues. (Elementary transactions in ArchOS

correspond to traditional nested transactions in database systems.) During the course of its

execution, each compound transaction may ;1,,oke a number of arobject operations and/or operating

system primitives. At the completion of the execution of the compound transaction, all of the locks

that have been obtained during transaction processing are released (despite the fact that the

compound transaction may be nested within another transaction). In the event that a higher-level

transaction aborts after the compound transaction has committed, it is not possible to guarantee that

all of the operations performed by the compound transaction can be properly "undone" (in the sense

of traditional nested transactions). For instance, it is possible that another transaction has read, and

acted upon, data that represented the outcome of the compound transaction after it had committed

(and thereby released all of its locks), but prior to the execution of its compensation action. Such a

situation could never arise in a traditional transaction system, but it certainly could happen in the

AchOS transaction system.

The ArchOS compensation action for a committed compound transaction consists, in part, of the

execution of a set of compensation operations associated with the arobject operation invocations and

operating system primitive invocations made during the course of execution of the compound

transaction. While these compensation operations may attempt to approximate the effects of the

traditional transaction "undo" operations, they cannot guarantee that the compensation will result in

the same system state as would have resulted if only nested elementary transactions been used.

Rather, the system state is transformed to a state that is equivalent to the state that would have

resulted if all of the other concurrent transactions in the system had been processed in the absence

of the aborted compound transaction. (See Section 4.2.4.1 for additional discussion of this point.) If

such compensation operations can be constructed and the weaker guarantees concerning the

system state in the case of the abortion of a higher-level transaction are acceptable to a transaction

author, then compound transactions can be used for a given application; however, if these conditions

are not sufficient, then elementary transactions must be used.

A few examples can be used to demonstrate cases in which compound transactions are or are not

appropriate based on the ability of compensation actions to provide the required semantics.

First, consider a case in which compound transactions are appropriate: the dequeue operation of a

weak queue. In such a queue, the first-in-first.out ordering of elements in a strong quleue is

weakened; it is acceptable to alter the order in which queue elements are removed from the queue by

the dequeue operation. As a result, it is possible to dequeue elements by means of a dequeue

operation based on a compound transaction. This operation simply returns thu he ad ,lc.-iunt of the

64

queue and then releases any locks obtained in the process of dequeuing that element. he

compensation operation associated with this dequeue operation is also quite simple: the element that

was previously dequeued is returned to the head of the queue. Because of the semantics of ule weak

queue, these operations are acceptable. It is unimportant whether or not any other dequeue

operations occurred during the interval between an element bWing dequeued and subsequently being

requeued because a strict ordering of the queue elements is not required.

Second, consider a case in which a compound transaction is inappropriate: the enqueue operation

of a weak queue. In this case, there is a visibility problem--that is, if compound transactions were

used to implement the enqueue operation on a weak queue, it would be possible for other

transactions to view the queue in states that represent partial results of computations that are

subsequently aborted. As a result of viewing such states, it is possible that those transactions will

alter the state in an inappropriate way. This situation is illustrated by the use of a compound

transaction to implement the enqueue operation for a weak queue. Such an enqueue operation

would take an element passed to it and append it to the tail of the queue, releasing any locks obtained

at the completion of the operation. The most obvious compensation operation for this enqueue

operation would locate the desired element in the queue and remove it, thereby attempting to make it

appear as though it had never been there. However, this is not a sufficient compensation action since

it is possible that an element may be enqueued and later dequeued before the compensation action is

able to be executed. In such a situation, the only way to provide the required semantics for the weak

queue is to abort the transaction that dequeued the element. Yet this presents the possibility of

cascading aborts, and ArchOS cannot permit cascading aborts to occur. Due to this visibility

problem, compound transactions are not appropriate for the implementation of the enqueue

operation.

Another disadvantage associated with the use of the compound transaction is also related to the

compensation mechanism: programmers must explicitly write the compensation operations

corresponding to the arobject operations for a given arobject. The concept of this type of transaction

is quite new, and we are not yet certain about the nature of the actions to be performed by a typical

compensation routine. (In fact, there are many issues that we do not fully understand with respect to

compound transactions: the number and variety of applications for compound transactions, the

amount of work required to define appropriate compensation actions, the form such actions 3huld

take, the impact of compensation acticns on the ability of ArchOS to make guarantees about real time

behavior, the level of concurrency that can be achieved usinq compound transactions, and !o on.)

So at this point, we have decided that ArchOS will initially support only pr- grammer co,!de

compensation actions (This should be contrasted with the case of traditional noeted trans,;6,:(,r1

65

database systems or, equivalently, nested ArchOS elementary transactions. In these cases, all of the
"undo" or "redo" types of operations are determined and performed by the transaction faciity for any

user-written transaction.) However, ArchOS will provide support to automatically compose these

basic compensation actions in order to facilitate the construction of arbitrary higher level

transactions (either compound or elementary transactions) that invoke arobject operations based on

lower-level compouiic transactions.

4.4.2.6 Rationale for the Transaction Syntax

Two potential formats were considered for the syntactic definition of transactions: an in-line format

(in which the transaction would be delimited in the body of the surrounding text oy some keywords)

and a procedural format (in which a transaction was defined as a separate entity--such as a function

or procedure--and was "called" by the transaction initiator).

There was no overwhelming reason for choosing one format over the other. This issue seemed to

be largely one of stylistic preference, not performance or functionality. Assuming that a typical

transaction is relatively short, the in-line format has the advantage of showing the actual transaction

steps to a reader of the code; on the other hand, the procedural format could be parameterized in the

hope of avoiding theduplication of definitions that might occur with the in-line format, (This seems to

parallel the arguments for using macros or subroutines in a given application.) Our preference was to

use the in-line format since it appeared to be more readable and compact.

Once the determination to use an in-line format was made, we needed to pick a specific format. We

felt strongly that transactions should not span multiple arobjects .-that is, a transaction should not be

initiated by one arobject and later completed by another arobject. Since the arobject is the basic unit

of program construction, transactions that span arobjects hardly seem to promote modular program

construction techniques. In fact, we felt that a transaction should begin and end in a single process.

The reaconing for this decision is a simpie extension of the urgument previuusly given for i equi ing

the transaction to betjin and end in a single arobiect. The ET{...) and CT[...} synt, ctic structures

selected for use in ArchOS force a transaction to begin and end in a single prc.ess, while other

possible structures (such as arbitrarily placed Begin Transaction and EndTran!action delimiters) did

not.

4.4.2.7 Rationale for Lock Support Decisions

Several important decisions were made with respect to the support to be pro,.'id.d to the C1.rlt in

terms (,. obtaining locks on shared data objects. This portion of the rationale vill deal wIth threo of

the most important ,rectr3ons: (1) the decision to support both d i: :t7 c; TJ rrutocol md I i tr e

66

locking protocol [Silberschatz 801: (2) the decision that the client must explicitly set locks , and (3) the

decision to allow the client to explicitly release locks within a transaction.

ArchCS supports both discrete locks and tree locks because we feel that each type of lock

addresses a different set of client needs, and neither type alone addresses all of these needs. For

instance, the tree lock is supported because it is able to make an important guarantee about the

nature of the computations that use exclusively tree locks from a single lock tree: if a computation, C,

obeys the tree lock accessing rules and if all of the other computations that obtain locks in that tree

release them in a finite length of time, then computation C will also complete in finite time without the

occurance of deadlocks. We believe that the guarantee that a computation will take place without the

possibility of a deadlock is extremely important and justifies the support of tree locks in ArchOS.

However, tree locks cannot be the only locking mechanism in ArchOS. In defining the tree structure

to be used in connection with tree locks, the client is explicitly specifying the legal access patterns for

locks in the tree. This may be a straightforward process when the client is dealing with a small

collection of related data items, but appears to be intractable when dealing with all of the locks in the

system. (if it were desired to guarantee that the entire system would be deadlock-free, then it would

be necessary to place all of the locks in the system in a single lock tree. Specifying a rational tree

structure for such a iarge number of often loosely related items seems impossible.) This leads us to

support discrete locks as well as tree locks. (Actually, ArchOS will provide support for multiple lock

trees defined by the client, as necessary.)

In fact. .e could build ArcheS without discrete locks, using a forest of tree locks. Yet. once it was

decided that %,,e could not include all of the locks in a single monolithic tree, it seemed to be

.iorthwhile to allow the more traditional discrete lock to be used as well. Presenting the view to the

client that each discrete lock is actually a degenerate (single node) tree lock seemed to be

unnecessariy complicated. (Although that may be the manner in which di.crete Iccks are actually

mplemented.)

The next malor point to be discussed is the justification for the rule that a client must explicitly

obtain all of the locks needed to perform a given computation. This decision was reached for two

reasons. First, a system that would handle the acquisition of locks automatically would be at or

be/end the state-of-the-art for database systems. Since this is not 'elated to ArchOS' priryr research

goiis, we would prefer not to expend the effort that such a capability would require. Sccond even it

,we had an automatic lock acquisition facility, it seems inevitable that the system would bu more prone

to deadlocks than if the client explicitly requested the locks. This is due to the fai thh th,, -,A, tm c

67

system would often have to upgrade a "read" lock to a "write" lock curing the course of a

transaction. The attempt to upgrade the lock could lead to a deadlock situation, which might have

been avoided if a "write" lock had been requested in the first place. Although the automatic system

would have no way of knowing that a "write" lock would eventually be needed, the client who wrote

the program would indeed have known and could have avoided the situation in many cases.

The final major point to be addressed concerning locks is the use of the ReleaseLock primitive--

specifically, a justification for the use of this primitive within a transaction.

Aithough the use of the ReleaseLock primitive within a transaction can violate the locking protocols

of the transaction system, it can also be used in a manner consistent with those rules. in particular,

tree locks -.an be released during the course of a transaction if they are not needed for the

transaction computation. For example, if a given tree lock were obtained only to lock some of its

descendants in the tree, then that lock could be released after the locks on the descendants have

been obtained, with no undesirable effects. Also, it is possible that explicit releasing of locks might be

useful in taking full advantage of Sha's notion of setwise serialiability [Sha 841.

A few other minor items concerning locking issues should be mentioned. The syntax chosen for

declaring locks in an aroblect is similar to the syntax used in declaring variables (with types

DISCRETE - LOCK - ID or TREE - LOCK - ID). However, the tree structure of the tree locks is defined

dynamically by means of the CreateLock and DeleteLock primitives.

Also. we have not yet made a final decision concerning the "strength" of the connection between a

lock and the data item it is associated with. If locks are closely associated with the data item, then the

system can perform a number of checks to guarantee that the locks aie being used properly.

However if th's bond is weaker, then the client has more freedom to associate locks with more

general or rore absP act data items or even facilities. (For example. the client ccu!d ,btain a !ck on

an arb:trary character vtring which may not corres;)ond to any data itern at - time the h,ck is

obtained, This capability might be more difficult to provide if locks are tightly associated only .vith

existent data items.) In this case, though, the client must use a programming convention in order to

guarantee that the locks are used properly in accessing the data. These two examples are the end

points of a range of possible lock strengths. We have yet to decide where in this range of possibilities

the Arcr CS suoported !ocks should lie.

Finaly ArchOS does nrovide a client-specified timeout parameter to bound the e,,erution ,iin' of :i

'iven transaction. This provides a cru facility to pr,.vnt deadlocu, , from tyiiv tp !he tri ,.1R{mm

68

for an arbitrarily long time. ArchOS will not necessarily detect a deadlock condition for the client; the

ultimate responsibility for handling the possibility of a deadlock belongs to the client. However,

ArchOS will provide some deadlock detection facilities. The exact nature of these facilities has not

yet been fully determined, but some cardidate facilities are: ArchOS will detect all deadlock cycles of

length two (or perhaps three), or ArchOS will detect all deadlocks that involve the resources of only a

single node. The level of deadlock detection service provided will be strongly influenced by the cost

of providing that service. Since we will not be able to detect all deadlock conditions, we will only

perform that deadlock analysis that is relatively inexpensive, while still capable of detecting some of

the more common situations. In the event that a deadlock is detected, ArchCS will abort transactions

as required in order to allow processing to continue without deadlock.

4.4.2.8 Rationale for Inclusion of Critical Regions in ArchOS

ArchOS supports critical regions to assure exclusive access to shz.red data items within a single

arobtect by means of the Region primitive. However, it may be noted that ArchOS also supports

another, more secure, method of obtaining mutually exclusive access to shared data items. the

transaction.

Since ArchOS is already committed to providing a transaction facility, it may not be obvious why

critical regions are also supported. In fact, the main reason is that critical regions do not require all of

the powerful facilities that a transaction supplies, whether they are needed or rot. It was dec:ded that

no matter how efficient the ArchOS transaction facility was, it would still probably be slo,.wvr : han a

mechanism that only provides a small fraction of the power of a transaction (even a comoound

transaction, which would typically involve less processing than an elementary 'ransact:on). As a

result, the critical region can be used to provide a simple mutual exclusion mechanism that ',wil often

be needed when accessing shared data oblects for which the failure atomic, permdr r i-t, or

serializable properties of transactions are not required.

4.4.2.9 Rationale for transaction Nesting Rules

ArchOS allows both elementary ard compound transactions to be nested arbitrarily .',ithin a

transaction. Such interleavings are necessary for proper system behavior. This ,.ill be dernon;trated

by a number of examples that point out the necessity of each type of nesting:

* In order to provide the traditional database nested transaction view it is necessary to
allow the nesting of elementary transactions within elementary transac:;Gons

* 9',here failure itomicity (the property by which either all of the actions of .1 ,rtnsactior' -ire

performed or nune are) and visIbility issues (as mentioned in Section 4 4 -ii :irw not of
orime concern. 3yzem pertormanice can be maximized by Fnployinq , :om:;und
transactions rathtr than nested elementary transactions.

69

e In cases where compensate routines can provide similar functionality to more traditional
"undo" operations on locked data items (for example, consider the case of compensating
for the allocation of a new page A memory from the operating system), it would be
advantageous for performance reasons to use compound transactions nested within
elementary transactions.

* Consider the case in which a compound transaction must perform a certain computation.
It is certainly reasonable to believe that it might often be carried out by a set of nested
elementary transaciions" thereby giving all of the automatic failure recovery and visibility
features of nested elementary transactions to the desired computation. It is of no interest
to the lower nested levels that their locks will all be released as soon as the compound
transaction commits (or aborts). (Note that the compound transaction in this case acts a
great deal like the top-level transaction of a set of nested elementary transactions.)

Since all of these cases seemed to be useful, it was established that ArchOS transactions could be

constructed by any arbitrary mixture of the two types of transactions.

Such mixtures of the two transaction types can be quite useful in selectively passing the locks of

some child transactions to a parent transaction while releasing those of other child transactions. This

ability to selectively pass locks is required since the ArchOS primitives will usually contain compound

transactions (in order to prevent passing system resource locks to clients), yet client elementary

transactions may be built by making Requests for services from other client arobjects. If a Request

Were simply a compound transaction, and the computation that resulted from toe Request execution

were considered to be a child of the Request transaction, then none of the requestee's locks would be

returned to the requestor (client) due to the nature of a compound transaction.

A mixture of elementary and compound transactions can be used in the above example to pass the

requester the requestee's locks while releasing the system resource locks at the completion of the

Pequest primitive execution. (See Figure 4-4.) By implementing the Request primitive as an

elementary transaction with several child transactions. the desired effect can be achieved. The locks

cbtained ',y the requestee's computation are automatica:'y pa. 3e d ba., to the .eqstr and, thc

,.ystcm actions (Reql and Rcq2 in the figure) are encapsulated within ch!ld compound .ian nacticns.,

so the requestor will not receive any of the system resource iocKs (since they are not return-ed to the

Request primitive's highest level elementary transaction.)

4.4.2.10 Rationale for Inclusion of the AbortincompleteTransaction Primitive

The 2.#rt!pcormpleteTransaction primitive provides a uniqli - (r ipability in hinrIlinq re- , from

o, d transactions.

T understand how such a primitive facilty could be u ,onsi. tuln er V.,l o 1 .,, j :;tu t i f I

4..

70

Client Transaction (ET or CT)

N Request
(ET)

Dummy
Reqi (CT) (ET) Req2 (CT)

0 0
Accept (CT) Requestee Reply (CT)

Computation
(ET or CT)

Figure 4-4: Selective Lock Passing by the Request Primitive

transaction performs a RequestAll invocation for some operation on all of the arobject instances of a

certain type, then each invocation will be serviced and appropriate replies will be returned. Also,

suppose thtat while servicing the request, each arnhiec.t instance performs some transaction

processing. And finally, suppose that the requestor is only interested in the firA t reply to thfe

RequestA;I invocation. (Although this sceriario may sound contrived, it is not. This is exactly the

manner in which a client would attempt to obtain the shortest response time from a set of aroblects,

all of which are capable of servicing the client's request. The client would simply request that all of

the aroblects provide the required service (by means of the RequestAlI primitive) and then wNait until

the first reply is obtained. Since, at that point, the actions of the rest of the 3ervers ar," no longcr of

interest to the requestor, their actions can be terminated.)

After receiving the first reply, the client could not correctly proceed without thc

71

AbortlncompleteTransaction primitive. This is due to the fact that the computations carried out by the

arobject instances that respond (or would respond) after the first should be aborted (including the

transaction processing that they are carrying out). However, the client has no way of knowing the

identity of those arobject instances that received the request since the RequestAll primitive was used

and therefore the exact identities of the acceptors were never explicitly known by the requestor. If the

client aborts all of the processing associated with that RequestAll primitive, then the work done by the

first replier will be lost as well. The AbortlncompleteTransaction primitive handles this case since it

allows ArchOS to handle all of the bookkeeping associated with the identities of the acceptors and as

well as performing the necessary selective aborts.

0 Client Transaction (ET or CT)

ReuestAII (ET)

Dummy 1(ET) Dummy2 (ET)

Accept Camp. Reply Accept Comp. Reply Accept Comp. ro.!y

Figure 4-5: RequestAIl Transaction Tree

Figure 4-5 shows the transaction tree structure associated with the Reques,'! primitive This figure

will illustrate the actions taken by the AbortinccmpieteTran.;dctlon primitie vith espect to the

transaction tree. The RPcquest,11I transaction has several children transaction;, :jne for eah of the

acceptors of the request for service At the ccnr)!,tion of each servers .. , he ,ubtr rcti n

72

associated with that server is concluded (committed). The Abortlncomplete Transaction primitive

aborts all of the child transactions of the named transaction (RequestAII, in this case) that have not

yet reached that commit point. In this way, the work that has been done will be maintained, while the

incomplete work will be aborted.

This primitive has proven quite useful in example programs, including the partially replicated

distributed directory example contained in Appendix A of this document.

4.4.2.1 1 Real-Time Facilities

ArchOS is designed to support user-defined real time deadlines, but its support for real-time

systems differs fundamentally from other real-time operating systems. There are, of course, many

existing real-time systems being used in a number of environments including the military, process

control, and robotics. It is interesting, however, to observe some of the characteristics found in the

operating systems (or executives, as they are sometimes called when a full operating system is not "

implemented) designed for these systems which provide support for real-time operation. Two primary

characteristics can be described:

* These operating systems are kept simple, with minimal overhead, but also with minimal
furction. Virtual storage is almost never provided; file systems are usually either
extremely limited or non-existent. I/0 support is kept to an absolute minimum.
Scheduling is almost always provided by some combination of FIFO (for message
handling), priority ordering, or round-robin, with the choice made arbitrarily by the
operating system.

* Simple support for management of a hardware real-time clock is provided, with facilities
for periodic process scheduling based on the clock, and timed delay primitives.

Conspicuously missing from these systems at the operating system level is any specific support for

managing user-defined deadlines, even though meeting such deadlines is the primary characteristic

of real-time app!ication requirements. instead, these systems are desinned to meet their dendlines hy

ensuring that the available resources significantly exceed the actual user requirements, and the

implementation is followed by an extensive testing period to verify that thls assumption is maintained

under "normal" loads. In priority-driven systems, deadlines are handled by assigning a high fixed

priority to processes with critical deadlines, disregarding the resulting impact to less critical

deadlines.

The ArcriS primitives have been designed to provide the information which will enable the

scheduling function to sequence processes ac.ording to their deadlines, ensuring that all deadlines

-ire met in each node as lony iS there are sufficieiit resources to meet them. Tcchniqiies for handling

suc ,deadlines ire well known, jiven sufficient resources,

73

An important ArchOS research area, however, is the handling of these deadlines when there are

insufficient resources to handle all of them. User policies defining potential objective functions for

these cases will be accepted, and a best effort will be made to implement these policies when

resources are insufficient. Essentially two primary decisions are required in these cases:

* Which deadlines should be missed, and by how much? That is, should some deadlines
take precedence, or should missed deadlines be fairly distributed? Should some
processes be aborted if their deadlines cannot be met?

* At what point should some processes be migrated to other nodes? If so, how many
processes, and which processes should be migrated?

4.4.2.12 Policy Definitions

We felt from the outset that an application running under ArchOS would need a great deal of

flexibility in order to meet its specifications. Therefore, we decided to support application-defined

policies to manage certain resources. At this point, we have limited the policy definition capability to

two specific management tasks: process scheduling (initially on a single node) and process

reconfiguration (process migration or relocation) among nodes. This decision was made because we

did not feel that there was a global programming paradigm involving application-defined policies that

we wished to impose on the application program writer; currently, we treat each facility on its own

merits with respect to the use of application-defined policies. We do have an overall framework within

ArchOS for the support of application-defined policies, but we would like to demonstrate the

suitability of our ideas on a few test cases before spreading the approach throughout the entire

system.

In addition, process scheduling and process reconfiguration in a distributed system are of particular

interest to the real-time application programmer, who is often in the best position to determine the

high-level scheduling policies of the system. This is due to the fact that the actual deadline

constraints that the system must satisfy ar. imposed by the externa! environment and the nature of

the application processing. By allowing the application progrummer to define the scheduling policy, it

is expected that the system will better be able to carry out the process scheduling task with these

factors ir mind, particularly in situations where there are insufficient processing resources to carry

out all of the applications functions.

Another area of interest within the Archons project concerning the use of policy within a facility is

the separation of the policy and mechanism portions of the facility. This work is similar in spirit (if not

in Implementation) to the policy/mechanism seoaration work done for the Hydra syste', [Wulf 1].

However. fL the most part, ArchOS will not focus much attention or that particular aspect of policy

74

definition for a facility. This is partially due to the fact that, in many cases, it is very difficult to draw

the line between those protions of a facility that are policies and those that are mechanisms. And

since drawing that line is not a central focus of the ArchOS development effort, we feel that we should

not spend a great deal of time pursuing this task. (We will indeed attempt to separate policy and

mechanism insofar as possible in ArchOS, but we will not push this idea very hard.)

Once we had decided to provide support for application-defined facility policies and to make an

attempt to separate policy and mechanism in the implementation of the facility, there were still a

number of open questions.

First, we recognized that there is a spectrum of choices in the amount of flexibility to be provided to

the application writer. One approach to the specification of a facility's services would involve: (1)

determining the set of all of the policies that might ever be used to manage the facility, (2) selecting a

set of mechanisms that can be combined in various ways by that set of policies to provide any of the

previously identified facilities, and (3) making those mechanisms available to the application

programmer to construct the facility. While this scheme allows the application writer a great deal of

freedom, it is possible that it might be very difficult to actually carry out the first two steps listed above.

A second approach limits the options of the application writer (and so might be more secure and

reliable from the operating system's point of view) while still allowing the client to select the policy to

be used in managing a facility. In this case, the application programmer would be able to select the

facility policy from a limited menu of policies. (Essentially, the programmer has been given a policy

mode switch.) The programmer would not necessarily even know the mechanisms that actually

underlie the policies in this case. For process scheduling when processing resources are not

sufficient to meet processing demands, we have chosen a scheme that lies somewhere between the

extreme cases listed above. We intend to design a policy scheduling facility that has a fixed set of

mechanisms that the client cannot directly access. Some of these mechanisms will evaluate value

functions in order to compute an optimal (or near optimal) schedule for processes on a given node.

The value functions that correspond to many of the well-known scheduling approaches will be

available to the client (in a form similar to a library). However, the client may also specify the

parameters for a certain class of value functions and submit a value function to the process

scheduling facility to determine the exact policy to be followed. Although this approach does not

allow the client to specify an arbitrary value function to the process scheduler, it does allow much

more freedom than choosing from a small menu of well-known policies (such as "missing fewest

deadlines" or "minimize maximum lateness").

Second, there are a number of places where application-defined policies irid policy/mechanism

75

separation can be used. We considered the possibility that we could have two levels of application-

defined policies: policies that affected the entire distributed program and policies that affected

individual arobiects. We believe that there are cases where both of these alternatives make sense.

However, neither process scheduling nor process reconfiguration seems to have a compelling use for

arobject-level policies. As a result, the policy definition capabilities described in this document are

concerned only with policies that affect the entire distributed application program. Perhaps we will

pursue multiple levels of policy in a later version of ArchOS.

There is another sense in which multiple levels of policy may be discussed -- a hierarchical sense. A

facility at a given level of abstract may be decomposed into a set of mechanisms that are manipulated

by means of a set of policy statements. Each of the mechanisms at that level of abstraction, in turn,

are also decomposable at a lower level of abstraction into a set of lower-level mechanisms

manipulated by a lower-level policy; and so on. At this time, it is difficult to see exactly how such a

hierarchical decomposition of facilities will aid in their design or performance. For the present, we

have decided to apply the notion of policy/mechanism separation at only a single, meaningful level.

(Our system was not intended to examine this policy/mechanism hierarchcy, and, once again, it is not

central to the development of ArchOS as a research vehicle.)

Third, although we are currently employing only two client-defined policies, the primitives provided

for the definition of policies by the application program are intended to be used for any other policies

that may be defined. They are very generic in nature (associating a policy module with a special

policy name and associating values with attribute names that may later be examined in carrying out

policy decisions) and were intentionally selected to support a wide-range of policy definitions. We felt

that a general approach to policy definition was more desirable than a specialized approach for each

policy to be handled.

Finally, we have given the implementation of an application-defined process scheduling policy some

thought. Since this facility must be accessed often and it must manipulate low level operating system

objects (such as the queue of runnable processes), it would be advantageous for it to be resident in

the kernel's memory space. We intend to have a method to allow at least that special case, of an

application-defined policy module be resident in kernel space. Of course, updating the process

scheduling policy and coordinating the access of the policy module with client-space data will

provide some additional complications, but these should not be too great.

76

4.4.3 ArchOS Primitives

The ArchOS primitives described in this report can be divided into two levels. The primitives which

belong to the ArchOS kernel level are called kernel primitives and the primitives which are

implemented above the kernel are called system primitives. This distinction will help an application

designer but we did not provide any indication of which, is which at this stage. The relation between

the system and kernel primitives will be described in more detail in the System Architecture

Specification document.

This section starts by briefly pointing out the important design problems for the complete set of

ArchOS primitives. It then describes our design decisions for each primitive, reflecting the structure

in the the previous chapter.

4.4.3.1 Important Design and Research Problems

In the design of the ArchOS primitives, we consider simplicity and uniformity to be the most

important design goals. All of the ArchOS primitives should provide a uniform interface to a client.

Thus, a primitive is accessed by a procedure (or function) invocation.

While we are trying to achieve simplicity, we also consider the primitive set's optimality as well as its

completeness. Unfortunareiy, there is no formal notion of a complete set of prinitives in a distributed

operating system context [Tokuda 83a], so we have tried to evaluate the primitives' expressive power

in various distributed applications.

" Simplicity:
We have adopted a procedure (or function) call interface for all of our primitives. Even
though the request message must be t,ansferred to a suitable arobject by a Request
primitive, it will be called by a procodure (or function) interface. It should be noted that
our original intention was to reduce the number of primitives visible from a client process.
For instance, a single Create primitive would be sufficient if the target language allowed
"overloading" of procedures/functions. The current CreateArobject and CieateProcess
could be united and used as follows:

arobject-id = Create(arobj-name);
process-id = Create(proce.s- name);

One weak point is the lack of a notion of default parameters. For example, the default
value of the node-id argument in the CreateProcess primitive could be set to "ANY-
NODE", so that a caller would not need to specify this optional argument every time.
However, the current ArchOS interface requires that the client must specify all p;lrameter
values explicitly at calling time. (due to the limitation of C language.)

* Uniformity:
We have provided a uniform syntax as well as uniform (i.e., network transparent or
location independent) semantics for each primitive. For instance, communication

77

primitives provide the identical semantics for local and remote communications. Arobject
and process management primitives also provide uniform semantics for creating and
destroying an instance.

Optimality and Completeness:
While attempting to minimize the number of primitives in ArchOS, we paid careful
attention to assure that the full expressive power of the primitive set was maintained. On
the other hand, many primitives were added to support new facilities such as transaction
and policy management. Also due to some language constraints, we needed to increase
the number of primitives a little, but the current primitive set can be used to construct an
extremely diverse set of distributed applications.

4.4.3.2 Arobject/Process Management

We view an arobject as a basic module for embodying a distributed abstract data type. In particular,

we decided to treat an arobject as an active system entity rather than a passive entity. There are many

advantages and disadvantages related to this decision. First, we can easily define an autonomous

module. It is easy for an arobject not only to initialize its computational state by itself, but also to

recover its computational state by itself. In olier words, by having a single INITIAL process in each

arobject, a designer can give responsibility for recovery to the INITIAL process. Second, unlike

traditional procedure invocation in abstract data types, a caller cannot invoke an operation of an

arobject in a master-slave manner, but must use a form of rendezvous. The receiver therefore has the

right to accept, reject, or delay the requested function. Finally, the degree of parallelism within an

arobject can be dynamically changed in many ways. For instance, a process can be created in a

different node to perform a requested computation on demand or many processes can be pre-created

to accept a particular type of request.

We provided a completely network transparent arobject/process management. That is, creation

and destruction of arobjects and processes can be performed without knowing the location of the

target arobject or process.

The following functionalities are not adopted for the current At chos:

o Multiple, simultaneous creation f arobjects and processes
This might be useful to instantiate a replicated arobject simultaneously. However, it
creates more conflict with other optional arguments such as node-id. Thus, it must be
invoked once for each arobject or process instance in the current system.

*Hierarchical dependency among arobjects
There are no hierarchical dependency among arobjects except for nested ircbjects in a
distributed program. Thus, a single arobject can be created and destroyed with no effect
on the rest of the external the arobjects in the same distributed program. However, it
should be noted that nested aroblects are killed when enclosing arobject is killed.

78

9 Inheritance relationship among arobjects
There are no inheritance relationship among arobjects. In modern programming
languages, such as Smalltalk-80 [Goldburg 83], Favor [Nenreb 811, and
LOOPS [Bobrow 811, the inheritance relationships among objects have shown great
advantages, improving the structural sharing among abstract objects and simplifying the
modification of the existing objects. We considered a multiple inheritance relationship
among aroblects, but there were many difficult problems in providing a way to forward a
request message to its super(class) arobject. In our arobject paradigm, we wished to
avoid an unnecessarily (deep) hierarchy among arobjects; thus we did not adopt the
inheritance relationship. However, the current model can support a nested arobject
which is private to the outer arobject.

* Hierarchical dependency among cooperating processes
There is no hierarchical relationship among cooperating processes. For instance, in
ADA [Ada 83], the termination of a task depends upon the termination of its inner blocks'
tasks. Thus, the termination of a higher-level task may be delayed. In Shoshin [Tokuda
83b], every process must belong to a family tree which indicates such termination
dependencies. A process in Shoshin can be attached to or detached from the creator's
family tree at creation time. This dependency information might be useful during the
debugging phase, but the current system does not support this facility. That is, a process
can kill other processes or terminate itself without causing any additional killing among
communicating processes.

There are some restrictions on the use of the Kill primitive in ArchOS. First, a process can kill only a

process which exists in the same arobject. The reason is that, in principle, a process should not be

able to "see" within the body of the other arobjects. Even if a process were visible from the outside of

its arobject, that process should be protected from being killed by other arobjects in order to protect

its own environment.

4.4.3.3 Communication Management

The primitives for communication management were designed to provide support not only for a

conventional client-(single)server model but also for cooperation among multiple servers in a

distribut-J envirunment. Thus, the system suppotts a ReqoeLt-Accept-Pelp;y type of communication

among cooperating arobjects in either a ,ynchronous or an asynchronous manner.

To support such a cooperating server model, we also created a one to many type of communication

among cooperating arobjects. That is, a process can invoke an operation on a group of particular

arobject instances at once. To provide this type of communication, we have adopted asynchronous

Request (i.e., RequestAll and RequestSingle) and GetReply primitives. Unlike a completely

synchronous communication, the requestor does not need to wait for all replies to come back.

However, this asynchronous feature may increase the compiexity of transaction control.

79

As for various server structures, we are interested in a collection of servers which can increase the

availability and reliability of service. The productivity of the servers may also increase together in a

collection of cooperating workers. Even for the single server case, it is easy to make an arobiect

autonomous and cooperative, since there is at least one process managing its service. Unlike the

master-slave relationship in remote procedure calls, the server can control not only the sequence of

incoming messages, but also the execution order of the actual services.

The current communication management does not support or adopt the following functionality:

* Message forward primitive
A message forward primitive was not added in order to maintain the basic rule that only
the arobject receiving the request mPssage can spind a reply to the caller. Furthermore,
within an arobject, a process can simulate a forwarding function by creating a new
process and passing the message as its initial parameter. The lack of a general forward
primitive may adversely affect the creation of pipelined server processes, but it prevents
illegal use of transactions across the arobject boundary.

" Remote procedure call paradigm
Although a process can communicate with other arobjects only by invoking arobject
operations, no master-slave relation exists in our message passing paradigm. Our model
insists on a rendezvous type of communication among arobjects. Note that when a
process accesses a private data object from a remote node, a conventional remote
procedure call will be used. If such a data object and the calling process are located in
the same node, then the normal procedure call will be used with identical semantics to
the RPC case.

" Built-in timeout facility in communication primitives
In order to bound the execution time of communication activity, we considered adding
one more argument, namely a timeout value, to each communication primitive. However,
we preferred to give the user a timeout facility outside the communication primitives. It
shculd be noted that each communication primitive may contain a compound transaction
so that it is also bounded internally.

4.4.3.4 Synchronization

There are two levels of synchronization support in ArchOS. One is a critical resion for controllinq

shared private data objects and the other is explicit locking primitives for controlling inter-transaction

activities.

There are many problems with the critical region construct. For instance, if a process dies within a

critical region, the state of the shared objects cannot easily be restored. It is also difficult to hountd

the total waiting time as well as the eyecution time of the critical region.

Despite these difficulties, a critical region scheme wat adopted, since we expect that creatin_ a

80

compound transaction for such a shared object may be unnecessary in certain situations. For

instance, there are cases in which permanency of data objects is sufficient without providing full

failure atomicity.

The explicit lock and release primitives were necessary to control concurrent transaction activities.

It is clear that Ly using a discrete lock type, we could encounter a deadlock. In case of a simple

deadlock, ArchOS might detect and resolve it; however, in general, it will remain the user's

responsibility to detect and resolve deadlock problems.

On the other hand, by using a tree lock protocol a user can avoid the deadlock problem in some

cases. However, a user must declare the dependency among locks in a tree by using the Create Lock

primitive. (See Section 4.4.2.7).

The current synchronization management does not support or adopt the following functionality:

" Error recovery in a critical region scheme
We believe that any shared object which requires failure atomicity should be accessed
from a transaction. For instance, we can use a compound transaction to replace the
cr:tical region by using the CT{ ... } construct.

" Timeout (exception) handling within a critical region
The critical region construct simply takes a timeout parameter to bound the total
execution time of the caller. This timeout mechanism does not provide a corresponding
exception handler. Thus a user must provide its function.

4.4.3.5 Transaction/Recovery Management

A compound or elementary transaction construct creates a new transaction scope in a client

process. Within this scope, a client can access atomic objects as if these computational steps were

executed alone. However, there are several restrictions on these steps needed to maintain the basic

properties of transactions. These restrictions are as follows:

* Between any two transactions, a transaction cannot pass any its computational state to
the other transaction by using a non-atomic data object. The following Example I shows
two illegal transaction scopes in a single process.

81

Example 1: Computational State Passing via a Non-atomic Data Object

Arobject Server body

process INITIAL(parameters)
{

NormalType State,, State2; /" Non-Atomic objects */

ET1 (timeout)f
State, = Compute1 (arg,. arg k)}

ET2 (tiineout)(
State 2 = Compute 2 (State,, argl. arg k)}

In Example 1, the illegal (state) passing occurs within the INIT process by using the
non-atomic data object, State . Since ET2 depends on the value of State, the
transaction property of ET2 will not maintained.

* From two independent transaction scopes, two arobjects cannot communicate with each
other by using a communication primitive or a shared abstract data object. This is an
example of so-called cooperating transactions [Sha 83] and the current ArchOS model
does not support it.

For instance, the following two examples show normal and cooperating transaction
scopes.

82

Example 2: A Normal Transaction Scope

Arobject Requestor body

process INITIAL(parameters)

ET(timeout)(
Request(Server-Aid, SERVICE, reqmsg, repmsg);

... steps . . .

Arobject Server body

process INITIAL(parameters)

while (true)
t-opr-aid = AcceptAny(ANYOPR, reqmsg):

CT(timeout)(/0 begin compound transaction '
. * steps . . .
do-service(t-opr-aid.opr, reqmsg, replymsg);

} I end transaction */

Reply(t-opr--aid. tid, replymsg):

83

Example 3: A Cooperating Transaction Scope

Arobject Requestor body

process INITIAL(message){
ET(timeout)(

Request(Server-Aid, SERVICE, reqmsg, repmsg);
steps

I

Arobject Server body

process INITIAL(message)
(

while (true) {
CT(timeout)(/0 begin compound transaction */

t-opr-aid = AcceptAny(ANYOPR, reqinsg);
steps

do_service(t-opr-aid.opr, reqmsg, replymsg);
Reply(t-opr-aid.tid, replymsg);

} /" end transaction /

In Example 2, it is easy to determine the execution sequence of the two transactions.
That is, ET in the requestor happened before CT in the server. On the other hand,
Example 3 shows two concurrent arobjects, namely two INITIAL processes,
communicating with each other from within two separate transactions.

* If an elementary transaction contains a nested compound transaction, there is a
possibility of deadlock due to the nature of the lock management. The following example
shows the possibility of deadlock within a single transaction.

84

Example-4: A Deadlock within a Single Transaction

Arobject Server body

Process Server(message)
(

ET(timeout) (/* begin elementary transaction $/
. I ET step I
sval = SetLock(DISCRETE, Lx, WRITE) /* get a lock on ob
S..operate on X

CT(timeout)(/" begin compound transaction */
CT steps

/ get a lock on object X /
sval = SetLock(DISCRETE, Lx, WRITE)
<<. operate on X .>> /* deadlock! */

} /" end transaction /
ET step 3

/0 end transaction 0/

The problem occurs when the nested compound transaction tries to obtain a lock on
object X. Since the lock was already taken by the top level transaction ET, this compound
transaction will abort due *o timeout.

The current transaction/recovery management facility does not support or adopt the following

functionality:

* Cooperating transactions
Cooperating transactions are not supported as explained above.

* Detection of deadlock in the lock management
Complete detection in the locking facility is not provided. A detection mechanism, in
general, was left for the application designer. However, the proper use of tree-locks may
help the client to avoid deadlock.

e Automatic generation of a compensate action for a compound transaction
It is very complicated to automatically generate a compensate action for each operation
involved by a compound transaction. Thus, this was left for the application designer.
ArchOS supports only the automatic execution of well-defined compensate actions when.

a compound transaction is abocrted.

* Automatic lock management for a shared object
To determine the proper set of locks and their locking rules from the program is not an
easy task, and often the amount of sharing obtained is limitied due to simpleminded
locking rules. The lock management is also left for the application designer.

85

4.4.3.6 File Management

The current file management in ArchOS supports a single-level file structure and does not provide

any directory structure for users. However, the system can provide at least three kinds of file

properties. First, a normal file has the data portion of the file arobject in volatile storage. Second, a

permanent file's data portion is allocated in permanent (non-volatile) storage. Finally, an atomic file

has the data portion which is declared as an atomic data object.

Since there is no notion of file protection at this level, a protection domain can be build based on the

scope ot the reference name.

The current file management does not support or adopt the following functionality. (Note that the

following features are not permanently removed from ArchOS. These functionalities may be easily

adopted on top of the current file arobject's structure).

" Directory structure
There is no directory structure in the current file system. A client must use a flat file name
space to classify files.

* A replicated atomic filo type
This replicated file type must vary in terms of its access protocols and replication
schemes. Thus, there is no system supported replicated file type so tar.

" File sharing and protection scheme
There is no conventional access list for a file object, rather each file will have a set of
locks to control concurrent file accesses.

It should be noted that if a normal or permanent file is accessed from a transaction scope, all of the

transaction properties will not be provided. The file must be an atomic file type in order to fully utilize

the transaction facility.

4.4.3.7 I/0 Device Management

The I/0 device management provides a set of access primitives for normal or special devices in tho

system. These primitives are similar to the ones which are used for Iile management, but ArchOS

does not provide complete compatibility between the two.

The current I/0 device management does not support or adopt the following functionality.

e Full compatibility between devices and files
The main reason was that it is difficult to cover all different, specialized devices as
standard (i.e., atomic, permanent or normal) files.

* Transaction facilities are not supported on the real devices

86

Unlike arobjects, a user cannot create a transaction for a sequence of device operations.
This is because "undo"s are often impossible following real actions taken on these

devices.

4.4.3.8 Time Management

The time management primitives provide functions for obtaining getting time information and/or

setting/resetting scheduling parameters for performing time-driven scheduling. This time-driven

scheduling is based on ArchOS' best effort scheduling model. Since this model requires at least

request. delay, deadline, and estimated execution times as basic parameters, the Delay and Alarm

primitives were designed to provide these parameters from a client process.

There are several approaches to the provision of these functions in a real time operating system, but

these were chosen in an attempt to provide maintainability and modularity as well as time control. For

example, many systems provide a process time-out setting to be made at which an application

process will be scheduled. This frequently requires breaking a module at the delay point into two

processes, rendering the processing difficult to read and understand. The Delay and Alarm primitives

provide for such delays to be coded inline in the application without breaking the process into

multiple processes.

At the same time, the deadline-driven scheduling algorithm to be used in ArchOS is -provided with

the time parameters needed to apply deadline policies. A part of the research being conducted on

the Archons project concerns process scheduling in the presence of application-defined deadlines. It

is intended that application-defined policies will be used to control deadline-driven schedulinj .- h.ch

will attempt to meet deadlines or minimize the damage if insufficient resources are avai!abih o '-,

deadlines.

The current time management does not support or adopt the following funct~ona.,1,r1

* Asynchronous Delay or Alarm primitive
Since we would like to avoid interrupt-driven timeout routines. the - .

primitives are blocking primitives. This reduces the comple.,t/ rec;ui r-,

of a process body. To provide this type of asynchronous hanriir, the j,- -

new (time) process to avoid the blocking.

4.4.3.9 Policy Management

The policy management primitiv-es provide funct,,n .,h. ', -'

policy module. The policy set aroblect maintains -t' .4

policy module represents a real policy and maintai : ,.

CNCITS & TI IINIQL IS FR SLI PPRT 01R AL TIMI NOSC TD 1113
STIBL I 1 PFRATINv SYSTMMS UN LASSIIlD

BY RI(H-lHONLNVST (L8

I ffllfflffllfflffllf

mh h h ho
nhh hI

87

ie current policy management does not support or a at the following functionality:

e Dynamic addition/deletion of a new user-defined policy module
The current modal can only support predefined set of user policies, thus a new user-
defined policy cannot be recognized by ArchOS.

4.4.3.10 Syst'em Monitoring and Debugging Support

The system monitoring and debugging facilities provide various abilities to control the behavior of

cooperating arobjects and their processes during execution. All of the primitives for system

monitoring and debugging can only be used by a specially privileged arobject, so that a normal client

arobject cannot issue any of them.

The current system monitoring and debugging facilities do not support or adopt the following

functionality:

9 Single-step function for tracing process activity
A single step function is not supported yet, but may be added in the future.

* Creating an arbitrary break point in an arobject
A client cannot set an arbitrary break point in an arobject. The available breaking points
are only the communication points where a process sends or receives a message. A
monitoring process may trap the following execution step by using the CaptureComm or
WatchComm primitives.

e Specialized debug functions such as Redo or Undo operation for arbitrary
functions
These facilities should be built by using the current facilities, rather than creating a set of
new primitives.

4.5 Program Examples

This appendix presents an example problem involving a distributed data object along with two

potential solutions employing arobjects and the ArchOS system primitives.

4.5.1 The Problem: A Distributed Directory with Partially Replicated Data

In this example, the problem is to implement a distributed directory, where the directory data is

physically spread among several processing nodes with each directory entrl replicated at multiple

nodes in order to improve reliability. Notice that there is no guarantee that every node has a complete

copy of the directory information.

In particular, the problem is to construct a distributed directory of some fixed length, where each

entry in the directory associates a name (a string of characters) with a value (in the examples, the

88

values used are assumed to be integers). The data in the directory must be partially replicated at

several different processing nodes, and directory users must always have a consistent view of the

directory.

This type of distributed directory represents a class of data object that will be common in an ArchOS

client's distributed program---an object that is highly robust (due to the presence of multiple copies of

each critical data item at physically separate nodes) but does not require that the user of this data

object be aware of the physical distribution involved in the implementation. (In fact, this

implementation is invoked by the user in exactly the same manner as a centralized data object.)

4.5.2 The General Approach to the Problem

The solutions presented in the next two sections are both built upon the same fundamental

approach. The directory data is contained in several different arobjects (called directory-copy

arobjects), located at different processing nodes. These arobjects each contain some portion of the

total directory state, but it is unlikely that any two of them contain exactly the same data or that any

one of them contains all of the current directory data.

Another entity is provided to consistently access and maintain the directory-copy arobjects so that

the directory user "sees" a single directory object (called the directory arobject). This entity takes a

different form in the two solutions that follow, and this is their major distinguishing feature. In the first

example, one or more directory arobjects accept directory operation invocations and then service

them by making the appropriate invocations on the directory-copy arobjects. All of the arobjects in

this solution are separate entities, and so this solution views the organization of arobjects as being

quite "flat."

In the second solution, the entire directory service is provided by a single arobject. This arobject is

physically distributed over several nodes and has placed multiple processes throughout the system to

accept directory operation invocations. In addition, the directory-copy arobjects are embedded

within the directory arobject as private arobjects in the second solution. As a result, this solution

views arobjects as being organized in a hierarchical manner.

ArchOS supports both-views of the organization of arobjects(flat or hierarchical). Neither of them

appears to be better than the other for this example, but the client is free to organize arobjects in the

manner that seems most advantageous for the application at hand.

Both solutions manage the coordination of the multiple directory copies in the same way: by

89

applying the notion of using only a quorum [Gifford 79, htirlihy 84] of directory copies in order to carry

out any operation on the distributed directory. Using this method allows the directory to continue

operating smoothly even if several directory copies are unavailable at any given time. Each directory

operation (lookup, add, delete) requires only a quorum L: directory copies be involved to perform that

operation. In order to determine the latest value of a given name, the directory-copy arobjects also

maintain a version number with each entry name. (The current value of a given name corresponds to

the entry for that name with the highest version number in any directory copy.)

Also, notice that the transaction facility has been used in order to guarantee the consistency of the

directory information at all times. Elementary transactions have been used for the most part since the

directory operations invoked by a user of the directory arobject may be part of a larger transaction,

and in that case, if compound transactions had been used, the consistency of the directory could no

longer be guaranteed.

4.5.3 Solution 1: Two Cooperating Classes of Arobjects

As outlined in the previous section, this solution uses several separate directory and directory-copy

arobjects distributed throughout the system. The code for these arobject types is assumed to be

contained in two files: "directory.arb" contains the code for the directory arobject and "dir-copy.arb"

contains the code for the directory-copy arobject.

90

This code is contained in the file "directory.arb"

#define DIR-COPIES 2"N+1
#define READ-QUORUM N+1
#define WRITE-QUORUM N+1
#define DEL-QUORUM 2"N+1
/" If a DEL-QUORUM cannot be formed, NULL can be written to the value

field of a new version of thedesired name. Later', when all
copies are available, a delete can again be attempted. */

arobject directory specification
(

char i1 tle:
i[I. value,

STATUS result:

operation add(naine, value) --> (result);
operation delete(naine) --> (result);
operation find(name) --> (result, value);

arobject directory body
{

4.4 insert message type declarations here ****'

/" Private Abstract Data Type Definitions "/
private-abstract-data-type DCNAME z C

permanent AROBJ-REFNAME dir-copy-name;

/" Procedures to Operate on Atomic Data Items "/

procedure store(dcname)
AROBJ-REFNAME dcname;(

dir-copy-ome = dcname;
}

AROBJ-REFNAME function get()

return(dir-copy-name);I
} /0 end of private-abstract-data-type DCNAME

DCNAME dcname;

process INITIAL(dircopyname)
AROBJ-REFNAME dcname;
{

MESSAGE "reqLestmsg;
OPERATION opr;

91

(lcflameIstor~(di rcupynam~e);

while(FRUF){
AcceptAoy(ANYOPR. r'eques tmisg);
opr = msg-header-operation(requestnsg):
CreateProcessiopr. requestlnsg);

process add(add-requestmsg)/

char *uname;
int value!
int i;
STATUS rd-result;
int vairREAD-QJORIIM]:
int version[READ-QUORUM];

TIME timeout = TIMEOUT;
TRANSACTION-I) tid, trans-id;

PID pid;
struct add-replymsg(

STATUS result;

strcpy(name, requestmsg. body. name);
value = requestmsg.body.value;

pid = msg-header-caller(add-requestmsg);
tid a msg-header-tld(add-recluestmsg);

ET(timeout) (
trans-id =SelfTido;

read-quorum(name, val. version, rd-result);
if (rd-result I= OK) (

Reply(pid, tid, (FAIL));,
AbortTransaction(trans-id) ;

max-version - -1;
for (1-1; W-= READ-QUORUM; i++)

max-version - max(max-version, version(i]);
* wrlte-quorum(name, value, max-version+1, wr-result);

add-replymsg.body.result = wr-result;
Reply(pid, tid. add-replymsg);

if (IsAborted(trans-id))
/* handle error condition here

procedure read-quorum(name. value. version, result)
char *name;
int value[READ-QUORUM];

92

iW version[lYl:Al)-QUORUM];
SIAIUS result;
(

int count;

TRANSACTION-[D tid;
FIND-REPLYMSG find-replymsg;

count = 0;
/* initiate timeout "/
tid = RequestAll(dcname.get(), find. (name));
while (count < READ-QUORUM) (

GetReply(tid, find-replymsg);
if (find-replymsg.body.result == OK) {

count++:
value[count] = find-replymsg.body.value;
versiol[count] = find-replymsg.body.versio:

}
I
/* Need to fix case where quorum cannot be established. '/
AbortlncompleteTransaction(tid);

result = OK;

procedure write-quorum(name, value, version, result)
char *name;
int value, version;
STATUS result;
t

int count;

TRANSACTION-ID tid;
struct add-replymsg ...

count = 0;
/" initiate timeout "/
tid = RequestAll(dcname.get(), add, (name, value, version))
if (add-replymsg.body.result == OK) count++;
while (count < WRITE-QUORUM) (

GetReply(tid, add-replymsg);
if (add-replymsg.body.result == OK) count++;

}
/" Need to fix case where quorum cannot be found. '/
AbortIncompleteTransaction(tid);
result - OK;

/ End of directory arobject body "/

93

* This code is conLaifned i n th e file "d irc-copyar "
*

arobject directory-copy specification
(

char name[MAXSIZE];
int value;
int version-no;
status result;

operation add(name, value. version-no) -- > (result);
operation delete(name) --> (result):
operation find(name)--> (result. value, version-no):

arobject directory-copy body
{
/* Private Abstract Data Type Definitions */
private-abstract-data-type TABLE {

TREE-LOCK-ID t-lock[TABLESIZE];
/* define tree lock structure as a "linear" tree, such that

t-lock[l] is the root and has child t-lock[2];
t-lock(2] has child t-lock[3];
and so on. */

atomic struct table[TABLESIZE] (
char *name;
int value;
int version;

}

/* Procedures to Operate on Atomic Data Items "/

procedure init-table()

int i;
TIME timeout = TIMEOUT;
TRANSACTION-ID tid;

/" define tree lock structure 1
t-lock~l] = CreateLock(NULL-LOCK-ID);
for (0=2; i<=TABLESIZE; i++) C

t-lock[i] = CreateLock(t-lock[i-1]);
I

CT(tlmeout) {
tid = SelfTid(.);
for (-; i<=TABLESIZE; i++) (

SetLock(TREE-LOCK, t-lock[i], WRITE);
table(i].name = NULL;
ReleaseLock(TREE-LOCK, t-lock[i], WRITE);

I

94

if (1 sAbw' ttB(t i d)) {
/I hadle errori) cuid i-tion7

P1'OCtJ'dLure lookup(name. index)
char *namne.

int index. 1;

fIME timeout =TIM4EOUT;

index =-1,
ET(timneout)(

for, (izl: i<=TABLESIZE; i++){
SetL-ock(TREE-LOCK, t-lock[i]. READ):
if (strcinp(table[i].nane, name) == NULL){

index =i:
break for;

ReleaseLock(TREE-LOCK, t-lock[i]. READ):

STATUS function enter(index, name, value, version-no)
char *name;
int index, value, version-no;

TIME timeout =TIMEOUT;
TRANSACTION-ID tid;

ET(timeout) (
tid =SelfTido;

SetLock(TREE-LOCK, t-lock~index], WRITE);
if (table[index].name != NULL 11 table[index].name !=name)

AbortTransaction(tid);
strcpy(table[index].name, name);
table(index].value - value;
tabi e[index]. version = version-no;

if (IsCommitted(tid)) return(OK);
else return(FAIL);

procedure get-fields(index, name, value, version-no, result)
char *name;
int index, value, version-no;
STATUS result -FAIL;

TIME timeout - TIMEOUT;
TRANSACTION-ID tid;

ET(timeout)(

95

tid z Selfli'I();

Sottock(TREF-IOCK. t-lock[index]. RFAD):
s ripy('Iname . tab I ej iIdex I nm
value =table~index].value:
vet's iun-no ztable[indpXj. ver's ion:

if (IsComimitted(tid)) result =OK;

} /* end of private-abstract-data-type TABLE *

TABLE tab:

process TNITIAL(

OPERATION opr:

tab. iniit-table(;

while (FRUE)(
AcceptAny(ANYOPR, requestmsg);
opr = insg-lheader-operationi(requestinisg);
CreateProcess(opr, requestinsg);

process add(add-requestmsg)

ADD-REQ"IJESTMSG add-requestmsg;

char *name;
int value, version-no;
int index;
STATUS stat, enter();
TIME timeout zTIMEOUT;

struct add-replymsg (
STATUS result = FAIL;

strcpy(name. add-requestmsg.body.name);
value -add-requestmsg .body. value;
version-no =add-requestmsg.body.version;

ET(timeout){
index - lookup(name);
if (index <0) index a lookup(NULL);
if (index < 0) AbortTransaction(SelfTido);
stat - enter(index, name, value, version-no);
if (stat I- OK) AbortTransaction(SelfTid());
add-replymsg.body.result =OK;

Reply(msg-header-caller(add-requestmsg).
msg-header-tid(add-requestmsg), add-replymsg);

96

P rocess .ind(f in d reqtiws IiiI1sq
F I ND)-0 i U[US IMS(t a1d requw Li'i;(y

int index. value. version-no;
Char "en try - namle:
STATUS stat;

struct find-replyinsg
PTD pid;
TRANSACTION-10 tid;

strcpy(name. find-requestmisg.body.name);
pid z msg-header-caller(finid-requestmsg):
tid = nsg-eader-tid(find-requestmsg);,

indIex =lookup(name):
if (index < 0) RepLy(pid. Lid, (NOT-FOUNY});
el se

get-fields(index, entry-name. value, version-no. stat).
if (strcmp(nane. entry-name) ==NULL)

Reply(pid. tid, (OK, value, version-no});
else Reply(pid, tid, (FAIL));

} /* End of directory-copy aI'object body

97

4.5.4 Solution 2: A Single, Distribut..d Arobject

As previously discussed, this solution implements the entire directory server as a single arobject in

which several directory-copy arobjects have been included as private arobjects. As in the previous

solution, the code for the directory arobject is located in "directory.arb," while the code for the

directory-copy arobject is located in "dir-copy." In fact, the code for the directory-copy arobject is

exactly the same as in the first solution; however, the code for the directory arobject has been

changed somewhat. The greatest change has taken place in the INITIAL process of the directory
arobject: also, the directory arobject now contains a statement that identifies the description of the

directory-copy arobject as a private arobject.

98

* Tb is code is contained in the file "d iroctoi'y art)"*

#define DIR-COPIES 2*N+l
#define READ-QUORUM N+I
#define WRITE-QUORUM N+t
#define DEL-QUORUM 2*N+1
I' If a DEL-QUORUM cannot be formed, NULL call be written to the value

field of a new version of thedesired name. Later, -ahen all
copies are available, a delete can again be attempted. ~

arobjec t di rectory spec if icat ion

char *naine;
lilt value;
STATUS result;

operation add(name, value) -- > (result):
operation delete(name) -- > (result);
operation find(name) -- > (result, value);

arobject directory body

Sinsert message type declarations here *

/0 Private Abstract Data Type Definitions /
private-abstract-data-type DCNAME = (

permanent AROBJ-REFNAME dir-copy-name;

is Procedures to Operate on Atomic Data Items /

procedure store(dcname)
AROBJ-REFNAME dcname;

dir-copy-name = dcnaine;

AROBJ-REFNAME function gjet()

return(dir-copy-name);

/01 end of private-abstract-data-type DCNAME '

DCNAME dcname;

private-arobject directory-copy ="dir-copy.arb";

process INITIAL()

NODE nodeCTOTAL-NODES] - (NODEA. NODEB, ... NODEN);
int i;

All) tid:

fov (1 1: i <<OP TFS: i++)(
aid zCreattiAjecL(d i ec oiy -copy, NUI H e
RindArobjectNainp(aid. "dir-copy');

dcnaine store("dir-copy"):
for (i~t;. i.=SFRVERS, 1i)

CreateProcess(accept-invocs, NULL, node~i]):

process accept-invocs()

MESSAGE *requestinsg;
OPERATION opr:

while(TRUF) (
Accep tAiy (AJYORR, reques tinsg);,
apr = nsg-header-opera tion(requestinsg)
CreateProcess(opr, requestinsg);

process add(add-requestinsg)

char *namne;
int value;
int 1:
STATUS rd-result;
int val[READ-QUORUM];
int version[READ-QUORUM];

TIME timeout =TIMEOUT;
TRANSACTION-ID tid, tranF-id;

PIO pid;
struct add-replymsg(

STATUS result;

strcpy(name, requestinsg.body.name):
value = requestmsg.body.value;

pid =msg-header-caller(add-requestmsg);
tid - msg-header-tid(add-requestmsg);

ET(timeout) (
trans-id -SelfTid();

read-quorum(name, val, version. rd-result);
if (rd-result !=OK) (

Reply(pid. tid. (FAIL));
Abortlransaction(trans-id);

max-version -- 1;

100

for (i I: iI? F RAlD QUORUtM. i
max ver s ion =a~ ld ax -vul's ion , vet's ion[ij

add-replynasybIody.result wi'-iesult;
Reply(pid, tid, add-i'eplyinsg);

if (IsAborted(trans-id))(
/* handle error condition here *

procedure read-quorum(nane, value, version, result)
char *namne:
int value[READ-QUORJMI
int versionCREAO-QUORUM];
STATUS result;

int count;

TRANSACTION-ID tid;
FTND-REPLYMSG find-replynsg;

count =0;
/* initiate timeout VI
tid = RequestAll(dcname.get(), find, (name));
while (count < READ-QUORUM) (

GetReply(tid, find-replymsg);
if (find-replymsg.body.result =OK)K)

count++;
value[count] =find-replymsg.body.value;
version~count] =find-replymsg. body. version;

P~ Need to fix case where quorum cannot be established. *

AbortlncompleteTransaction(tid);
result = OK;

procedure write-quorum(name, value, version, result)
char *name;
mnt value, version;
STATUS result;

int count;

TRANSACTION-ID tid;
struct add-replymsg..

count - 0;
/* initiate timeout *
tid a RequestAll(dcname.get(), add, (name, value, version))
if (add-replymsg.body.result OK) count++;
while (count < WRITE-QUORUM)

GetReply(tid, add-replymsg);
if (add-replymsg.body.result ==OK) count++;

101

/'Nued Lu VI x cdse whlele quur'uml CdIIflU L he Iloulid.
Abor-t r coiup l eterransactiont(Lid):
result OK,

} /* End of direcLory ai'object body ~

102

* This code is cont,iined in the file "dir-copy.arb *

arobject directory-copy specification

char name[MAXS[ZE];
int value;
int version-no;
status result:

operation add(naine. value, version-no) -- > (result):
operation delete(naine) -- > (result);
operation find(naine) ->(result, value, version-no):

arobject directory-copy body

I' Private Abstract Data Type Definitions '
private-abstract-data-type TABLE{

TREE-LOCK-ID t-lock[TABLESIZE];
I' define tree lock structure as a "linear" tree, such that

t-lcock~l] is the root and has child t-lock[2];
t-lock[2] has child t-lock[3];
and so on. *I

atomic struct tableETABLESIZE]
char *name;
int value;
mnt version:

1' Procedures to Operate on Atomic Data Items '

procedure init-table()

int i;

TIME timeout =TIMEOUT;
TRANSACTION-ID tid;

/0 define tree lock structure 0/
t-lock~l] = CreateLock(NULL-LOCK-ID);
for (i=2: i<2TABLESIZE; i++) (

t-lock(i] z CreateLock(t-lock[i-1]);

CT(timeout)(
tid * SelfTid(.);
for (i:1; i<2TABLESIZE; i++)(

SetLock(TREE-LOCK, t-locki], WRITE);
table[i].name - NULL;
ReleaseLock(TREE-LOCK, t-locki, WRITE);

103

if (T..AbOiLed(Lid)) (
/I h andlet erij con d itL ion ~

procedure lookup(ndine , index)
char *name;

int index, i;

TIME timeout = TIMEOUT;

index z -I:
ET(tinieout)

for (i1l; i<=rABLESIZE: i++)
SetLock(TREE-LOCK. t-lock[i], READ):
if (strcinp(table[i].naine. namne) z=NULL)(

index=
break for;

ReleaseLock(TREE-LOCK, t-lock[i], READ);

STATUS function enter(index, name, value, version-no)
char *name;
int index, value, version-no;

TIME timeout =TIMEOUT;
TRANSACTION-ID tid;

ET(timeout){
tid = SelfTid();

SetLock(TREE-LOCK, t-lock[index], WRITE);
if (table(index].name !=NULL 11tabletmndex].name name)

AbortTransaction(tid);
strcpy(table(index].name, namey;
table[index].value =value;
table[index].version z version-no;

if (IsCommitted(tid)) return(OK);
else return(FAIL);

procedure get-fields(index, name, value, version-no, result)
char *name;
int index, value. version-no;
STATUS result -FAIL:

TIME timeout - TIMEOUT;
TRANSACTION-ID tid;

ET(timeout)(

104

Lid = Sel fTHi(;

Setiock(IRFE-IOCK. t-lok[inldpxl. RFAD).
strcpy(naine., tab IeLinidex j. nam~e),
value =table[index].valuo;
version-no = table[index]. vers ion:

if (IsComrnitted(tid)) result = OK;

} /* end of private-abstract-data-type TABLE

TABLE tab:

process INITIAL()

OPERATION opr;

tab. init-table(;

while (TRUE) (
AcceptAny(ANYOPR. requestmsg):
opr zmsg-lieader-operation(requestntsg),
CreateProcess(opr, requestmsg);

process add(add-requestmsg)
ADD-REQUESTMSG add-requestmsg:

char *name;
int value, version-no;
int index;
STATUS stat, entero;
TIME timeout = TIMEOUT;

struct add-replymsg (
STATUS result = FAIL;

strcpy(name, add-requestmsg.body.name);
value - add-requestmsg.body.value:
version-no =add-requestmsg.body.version;

ET(timeout)f
index - lookup(name);
if (index < 0) index - lookup(NULL);
if (index < 0) AbartTransaction(SelfTid());
stat aenter(index, name, value, version-no);
if (stat ax OK) AbortTransaction(SelfTid());
add-replymsg.body.result -OK;

Reply(msg-header-caller(add-requestmsg),
msg-header-tid(add-requestmsg). add-replymsg);

105

p rocess r iw((F i (-- j (I 'us tinls q
F I NLI-RI QU~ ISIMSG I) id -1'e(I ukS L1u j,

char snine;
int index. value, version-no;
char 'entry -namie;
STAFus stat;

struct find-replymsg..
PIO pid:

0 TRANSACTION-ID tid;

strcpy(name, find-requestnsg.b)ody.iainie);
pid = msg-header-caller(find-requestmsg);
tid = msg-header-tid(find-requesmnsg).

index =lookup,(namre) -
if (index < 0) Reply(pid, tid, (NOT-FOUND)).
else (

get-fields(index. entry-name, value, version-no, stat).
if (strcinp(name. entry-name) == NULL)

Reply(pid, tid, (OK, value, version-no});
else Reply(pid, tid, (FAIL));

/*I End of directory-copy arobject body

106

5. A rchOS S,' m o' rcn itectu re D.sc iii tion

This chapter describes the system architecture of ArchOS which supports all of the facilities and

primitives described in the client interfalce document [Jensen 85]. Since we view "ArchOS system

architecture" as a high-level view of the internal system design, this chapter focuses on the

description of the maior components of ArchOS operating system and leaves the detailed design to

the next chapter.

From a conceptual point of view. ArchOS consists of the ArchOS kernel and system arohjects which

are grouped together to form subsystemrs. The ArchOS kernel provides a set of basic mechanisms

which can support arobjects in both kernel and client address spaces. An ArchOS subsystem

consists of one or more system arobjects which provides an ArchOS facility. In other words, the

ArchOS primitives described in the client interface document are defined as a set of operations of

these system arobjects.

5.1 Overview

ArchOS is not a time-sharing operating system nor a network operating system for a set of

workstations. ArchOS is a physically dispersed operating system which performs decentralized

system-wide resource management for a decentralized computer which can be physically dispersed

across 10.3 to 103 meters, interconnected without the use of shared primary memory.

We view ArchOS as a reserach vehicle to perform research on the issues of decentralization in

real-time distributed systems at the OS level and below. Thus, the ArchOS facilities were designed to

allow test applications to be constructed with which to study ArchOS characteristics, but they need

not provide a particularly complete set of facilities in an application production environment. As we

specified in the client interface document, some system facilities are not fleshed out, but each facility

is functionally closed so that each function can be evaluated with respect to our research issues.

The basic model for system-wide resource management in ArchOS is based on our previous

conceptual/theoretical study and experimental study. In particular, we are interested in

decentralized resource management schemes where each global decision is made multilaterally by a

group of peers through negotiation, compromise, and consensus. Thus, ArchOS facilities are

provided by a group of cooperating servers of which each service entity is built by an aroblect on

each node. Since each arobject can have its own state and can activate computation independently

of other aroblects, cooperation among servers can be easily represented by a set of arobjects.

107

Furthermore, an aroblect cannot fetch or modify the status of any other aroblect .itlhoiil inv;kziiJ 1L

corresponding operation at the target arobject, thus the modularity of aroblects can eo be achi vo(d

as well as potential parallelism between the caller and called arobjects.

From the higher-level point of view, the overall structure of ArchOS is divided into two system

components. One component is an ArchOS kernel which provides a set of basic inechanisms and

links the higher-level policy with the mechanisms and creates an arobject environment. The other is a

set of system arobjects which implements ArchOS system facilities. A system arobject can be further

distinguished by where it resides, namely a kernel arobject which exists in the kernel and non-kernel

arob;ects which exist outside the kernel.

Since an ArchOS facility is built based on cooperating arobjects, it is easy to change the internal

implementation without impacting client programs. Furthermore, certain facilities are also built based

on the notion of policy/mechanism separation [Wulf 81], so that an existing policy can be changed or

a new type of policy can be created without changing mechanisms. Thus, ArchOS facilities can be

easily tuned towards a.particular type of application environment without changing the mechanisms

in the system.

5.2 ArchOS System Architecture

The system architecture of ArchOS should be flexible enough so that various degrees of

decentralized resource management schemes can be applied in ArchOS without incurring major

modification cost. Since the Archons project is not attempting to develop a computing facility, we

must consider "openess" of the system architecture.

The system structure of ArchOS was designed to improve the ,oustness, extensibility, and

modularity of OS functions. There is no centralized decision maker in the system for any type of

system-wide resource management. That is, any system-wide resource management is performed by

the cooperation among the essentially identical peer server modules at each node. These modules

allow the use of the "most decentralized" algorithms (that are practical) for managing system

resources.

The ArchOS system architecture was designed without assuming any specific hardware-level

structures such as node architecture and communication architecture. However, to maximize

performance, it is preferable to have the following architectural support: 1) Each node should have

two or more processors with a reasonable amount of shared memory; 2) Each node can communicate

108

with another node. a set of nodes (i.e., multicastiny), or all of the nodes within i re:.uoable .ilmoUnt of

time: 3) Each node should have a logically homogeneous environment. That is. even it the procebsor

architectures are different, all of the nodes can emulate the ArctiOS functionality

5.2.1 Objectives

The major objectives are derived from the research requirements and the functionality of ArchOS.

In particular, ArchOS is designed to be a research vehicle for investigating various decentralized

resource management techniques, so that various types of OS facilities can be added, changed or

deleted.

The design objectives of ArchOS system architecture are summarized as follows:

* Open system architecture:
Since ArchOS is designed as a research vehicle to investigate various decentralization
issues at operating system level and below, a new system component can be easily added
as well as deleting the existing facility.

" Highly decentralized resource management:
ArchOS should not have any centralized decision maker in the system and should be
structured as essentially identical peer modules replicated at each system node.

" High system availability:
To maintain high system availability in the face of node and communications faults,
provide for no lasting degradation of system function or response beyond the actual
resource loss encountered.

" High system modularity:
Previous distributed systems have been constructed around the physical
communications limitations of the system, as opposed to being based on such modern
software engineering principles as abstract data types and information hiding for defining
modularity.

" Highly extensible facilities:
To construct highly extensible facilities which will limit the cost of redesign for
implementing widely divergent operating system facilities for experimentation with the
fundamental concepts of interest to us in this research.

" Reasonable system performance:
To provide reasonable system performance to support applications with real-time
constraints. ArchOS must consider time-critical functions for which time constraints
define some system failure modes (i.e., issues of timeliness will not be ignored as they are
in some systems, nor will they be dealt with by simply providing a large ratio of available
to currently used resources, which is how virtually all other real time systems strive to
meet response time requirements).

109

5.2.2 Basic Approach

A basic approach to meet the previous objectives is that we provide a uniform view of the system

components. namely a kernel and a set of arobjects. An ArchOS kernel provides basic mechanisms

for ArchOS facilities and the cooperating aroblects support the policies to provide a particular set of

services. While we avoid a large monolithic kernel, we try to improve robustness, modularity, and

extensibility of each ArchOS facility as well as increasing potential parallelism by using the

cooperating arobjects.

To meet the previous objectives, we will use the following approaches:

" Open system architecture:
We will build ArchOS based on an object-oriented architecture view. so that the ArchOS
kernel is not a monolithic kernel and consists of a set of basic mechanisms and kernel
arobjects. On top of the kernel. ArchOS facilities are provided by ccoperating arobjects.
Since an aroblect encapsulates its associated information (information hiding), key
properties of each facility can be easily modified without affecting the other facilities.
Furthermore, additional system flexibility will be provided by identifying and separating
mechanism and policy in ArchOS facilities.

" Highly decentralized resource management:
Since we try to avoid having any type of centralized decision maker for system-wide
resources and each arobiect can have its own computational state and knowledge, it is
easy to form cooperation among peer modules in the system. Unlike traditional
procedure invocation in abstract data types, a caller cannot invoke an operation on an
arobject in a master-slave manner, but must use a form of rendezvous. Based on its own
state and decision, the receiver arobject has the right to accept, reject, or delay the
invocation of the requested operation.

" High system availability:
The use of atomic transactions to maintain consistency will result in continuance of
useful computation in the presence of lost, delayed, inaccurate, or incomplete
information. Also, a service handled by a set of replicated aroblects can be easily
supported by using the one-to many communication capability together with
transactions.

" High system modularity:
Since an arobject can encapsulate its state and implementation details from the other
ar objects, it is easy to use it as a system building block. System modularity is also
achieved not only by using aroblects, but also through policy/mechanism separation in
ArchOS facilities.

" Highly extensible facilities:
ArchOS facilities are implemented as a set of system arobjects. thus it is possible to
create a new type of service by creating a new set of aroblects and registering them

* Reasonable system performance:
To provide reasonable system performance. ArchOS subsystems are ruilt based on 3 set

110

of arobiects which can be exocutid on a multiprocessor based node without major
redesign.

A conceptual view of the ArchOS system architecture is depicted in Figure 5-1. On each node built

from one or more processors with shared memory, there are ArchOS kernel and system arobjects.

Client Arobjects: -

ArchOS:

Subsystem:

System ...
Arobjects:

Kernel: K K2 K

Node Processors: N.J EI I - - N I

Figure 5-1: Overview of ArchOS System Architecture

T'he 'S kernel consists of a set of basic mechanisms and a set of system arobjects which

res. - w. .. i kernel domain No system arobjects can be accessed without invoking the ArchOS

primitives. A client process .,,,t use a communication primitive, request, to invoke any system

primitives. ArchOS primitives defined in the client interface are provided either as kernel primitives or

system primitives. Kernel primitives are defined as an operation on kernel aroblects, while system

primitives are provided by an operation on the system arobiect which exists above the kernel.

ArchOS Subsystems are one or more arobjects grouped together by sharing the same responsibility

for providing a particular service, namely a set of functions in an ArchOS facility.

A system arob/ect can be a kernel arobject or an ordinary arobject which resides in the user

domain. A client arobject can be created on top of the kernel and resides in the user domain.

"1 11

5.2.3 Functional Dependency aniong ArchOS Subsystems

The relationship among ArchOS subsystems can be summarized by abstracting out the detailed

interaction among arobjects across the various subsystems. Since each subsystem consists of a set

of cooperating arobjects, many activities are initiated by invoking a particular operation in the

arobject. This section focuses on the functional dependency among ArchOS subsystems, rather than

on the detailed interaction among arobjects. The description of the internal structure of each

subsystem will be given in the next chapter.

From a functional point of view, ArchOS subsystems can be depicted as in Figure 5-2.

ArchOS Sybsystems:

Arobjet71 Communication File Moiiitoriiig/
Process Subsys. Subsys iUebugg ing
Subs s. IJ 11 ub sis

Transaction Subsys.]
System Arobjects: Time-driven

VM Subsys. I

Time-driven Page Set
Scheduler Ssy]Subsys.Sus.

Poicy 1bsys.JSubsys./ Suby.

ArchOS Kernel:

Base Kernel

Alpha subkernel

Node Processors:

I ~Harwe

Figure 5-2: Functional Dependency among ArchOS Subsystems

In Figure 5-2, each box represents a subsystem in ArchOS. However, unlike a traditional

hierarchical layered structured system, an operation at a lower-level subsystem can be directly

invoked from a client arobject.

112

The ArchOS Nernel provides a set of basic mechanisms and consists of a set of system arobjects

which reside within a kernel domain. Within the kernel, there are two subkernel layers: the lower-level

is called the Alpha subkernel, and the higher-level is called the Base kernel. Unlike a traditional

monolithic Kernel. the ArchOS kernel contains a set of of system arobjects. which we refer to as

kernel aroOlects, and it can initiate independent computation from client arobiects. A certain set of

basic mechanisms are realized to coordinate with the policy definition module, so that facilities may

provide a different type of functionality to clients.

The Policy management subsystem maintains a user-definable system module, called the policy

defniion module which consists of a policy body and a set of policy attributes. Since a policy

definition module can be placed in the kernel, a system arobject, or a client arobject, the policy

management subsystem creates and destroys a policy definition descriptor which indicates the

location of the policy definition and the information related to the policy body and attributed set.

The Page set subsystem provides a uniform view of secondary storage, namely a page set in

ArchOS. An arobject can access a file through the page set and logical disk subsystems. On each

node, there is a page set manager which can allocate or deallocate a permanent type or atomic type

of page set on a specified logical disk.

The I/0 device subsystem manages interaction between I/0 devices and arobjects. Any signal

from I/0 devices is handled at this subsystem and is translated into an invocation request for a

system arobject.

The System monitoring and debugging subsystem provides various abilities to monitor and control

the behavior of cooperating arobjects and their processes during execution.

The Time-driven scheduler subsystem provides a time-driven scheduling facility which may be

altered by adding, changing or selecting a different type of scheduling policy. The basic mechanism

is based on ArchOS' "best effort" scheduling model [Locke 85]. This subsystem also provides

functions such as obtaining time information and setting/resetting scheduling parameters for clients.

The Time-driven virtual memory subsystem provides a virtual memory management facility in a

time-driven fashion. The time-driven scheduler may be called from this subsystem to initiate pre-

paging in/out activities in such a way that the system can execute time-critical tasks in a timely

manner.

The Transaction subsystem provides transaction mechanisms for operations on arbitrary types of

113

aroblects. This subsystem supports two types of transactions, namely elemon',;iy and coip)i,,i,

transactions which can be nested in arbitrary combinations. To coordinate an atomic update for a

transaction, the transaction subsystem must cooperate with one or more page set managers which

the transaction has visited.

The Arobject/process management subsystem provides the basic functions to create and destroy

arobjects and processes. This subsystem also manages binding and unbinding of

arobjects/processes reference names and supports binding protocols to match a requestor with one

or more suitable server arobiects. The requestor arobject invokes an operation by using the

invocation crotocol through the communication subsystem.

The Comrn'n-ucation subsystem provides the invocation protocol and manages arobject invocation

among arcblects. This subsystem provides not only one-to-one communication for a conventional

client-(single) server model, but also one-to-many communication for the client-cooperating multiple

server model.

The F;ie subsystem provides system-wide location-independent file access. Although the file

subsystem does not support a hierarchical file name. space, a system-wide flat name space is

maintained at each node. The file subsystem also provides three kinds of file properties. A normal file

has the data portion of the file arobject in volatile storage. A permanent file's data portion is allocated

in permanent (non-volatile) storage and an atomic file has its data portion declared as an atomic data

object. For atomic files, the transaction facility is also supported through the transaction subsystem.

5.3 Structure of ArchOS Subsystems

An ArchOS subsystem consists of a set of system arobjects, called components, resident on each

node and provides a system-wide or local service within a node. Each subsystem was designed

based on a generic server structure for ArchOS in order to provide reliable and fast service of the

requested system functions.

5.3.1 Objectives

The internal structure of a subsystem should meet the following objectives:

" Various types of decentralized resource management schemes should be easily
implemented in a subsystem.

* A subsystem should be able to serve concurrent requests efficiently, fairly and without
dedlocks.

114

* A subsystem should be able to support replicated arobjects to incrHease availability of its
service.

* Each component should be able to stop independently and resume its activity without
major disturbance.

* Within a component, concurrent operation invocation should be easily provided if the
service requests can be handled simultaneously.

5.3.2 Internal Structure of Subsystems

The internal structure of subsystems is based on a generic server model which can provide system-

wide service in a reliable manner. The server model was used to provide the template for different

types of servers and to reduce the design complexity of subsystems.

The server model consists of service protocols, which define a complete interaction between a

client and all servers providing the same service, and a server structure.

Our view of system service at the subsystem level is depicted in Figure 5-3.

Service Class: SCa : 03 0 -3 rl :A Group of Arobjects

Server: SCal . An Arobject Instance

Operations: OPRall OPRa2 OPRalk : Operations

Protected

Resources:
Processes &Q Q -- Private Objects

Figure 5-3: Relationship among Service, Server, and Arobject

115

At the subsystem level, a ielerence name is given to each service class which provides a particular

service, namely a set of functions for an ArchOS facility. A service class is implemented by a set of

service instances, namely servers. A server is formed by an instance of an arobject and is normally

replicated at each node. However, a different set of servers can also form a service class, since a

reference name can be shared by these servers.

In general, services are replicated on each node, and system-wide resource management is

performed by using the service protocol to define interaction between client and server as well as

inter-server communication.

5.3.2.1 Service Protocol

A subsystem provides a service or a set of services for a client. A client can locate a suitable server

for a requested ser/ice and get the result back by initiating the service protocol. The service protocol

consists of three protocols: binding, invoking, and inter-server protocols.

The binding protocol defines how a client determines a suitable server for a requested service from

a set of servers. For instance, we can apply the following binding policies for certain types of

resource management such as creating a new instance of an arobject or a process in the system:

" First Fit (FF):
The first server from the matched servers will be selected to submit a service request.

" Random Fit (RF):
A server from the random selection will be used to submit a service request.

" Best Fit (BF):
One of the best matched servers will be used to submit a service request.

" Best Effort Fit (BEF):
The best matched server according to the best-effort (decision making) algorithm will be
used to submit a service request

It should be noted that RF protocol can be used without any interaction with potential servers, while

FF protocol may need at least one reply from the servers, BF needs all replies, and BEF needs all or

some replies.

The invoking protocol defines how a client can invoke an operation at a specific or nor-specific

server(s) and can get the service result. In ArchOS, a client arobject can invoke an operation

synchronously as well as asynchronously. Thus, it is possible for a client to invoke an operation at

multiple servers simultaneously.

116

" synchronous/specific server request:
A client can invoke an operation on a specific arobject by using a Request primitive.

" synchronous/non-specific servers request:
A client can invoke an operation on a specific service class by using a RequestAil
primitive followed by the necessary GetReply primitives.

" asynchronous/specific server request:
A client can invoke an operation on a specific arobject with blocking itself by using a
RequestSingle primitive.

" asynchronous/non-specific servers request:
A client can invoke an operation on a specific service class by using a RequestAll
primitive.

The Inter-server protocol defines how an individual server can exchange control or status

information to perform a service. Thus, the inter-server protocol is dependent upon the nature of the

service. For instance, local resource information of a server can be distributed to all other servers

periodically by invoking a suitable operation for a service class. This type of multicasting can also be

performed by using a requestall primitive.

5.3.2.2 Generic Structure for a Server

The generic structure for a server is based on the nature of service the server provides and the

characteristics of an arobject. Since any system service should be highly available, a server itself

must increase its availability by avoiding necessary blocking periods and deadlocks.

Each arobject has at least one process which has responsibility to create the necessary task force

to provide a service. The number of processes may be created dynamically depending on the request

load. On the other hand, a certain server might have a fixed number of processes to handle a fixed

number of tasks. Thus, the server structure is related to the nature of the service which is provided by

the cooperating arobjects.

We can summarize the generic structure for a server in Figure 5-4.

" Type I: a single process
The initial process accepts, requests, and processes them one at a time. That is, the
execution order of the operations will be totally serialized. Each operation invocation will
be handled by a corresponding procedure or function within the initial process.

" Type If: functionally partitioned workers
The initial process creates a number of workers according to the number of operations.
Coordination between workers is handled by the workers. Each operation invocation is
accepted by a specific worker process assigned to do the task. Thus, a worker issues the
Accept primitive to wait for a specific type of requested operation.

117

: Type I
0 Single Process

: Type II
0 00 Functionally Partitioned Workers

: Type III
0 00 0 Replicated Workers

Type IVa
A Manager with a fixed number of
workers

Type IVb
A Manager with a variable number
of workers

Figure 5-4: Generic Server Structures for a Server

" Type IIl: replicated workers
The initial process creates a number of replicated workers to accept "any" operation.
Coordination between workers is handled by the workers. Workers can be placed at
different nodes, so parallel execution of requested operations might be possible. Each
worker issues an AcceptAny primitive to wait for an invocation request.

" Type IVa: a manager with a fixed number of workers
The initial process creates a fixed number of workers as a service task force and
becomes a manager of them. Coordination between workers is handled by the initial
process and each worker may or may not be assigned the same task.

" Type lVb: a manager with variable number of workers
The initial process acts as a manager of workers and accepts all incoming invocation
requests and creates necessary workers on demand. Coordination between workers is
handled by the initial process and each worker may or may not be given the same
functionality.

118

6. ArchOS System Design Description

This chapter contains the ArchOS system design description and describes the internal architecture

of each ArchOS subsystem. From a conceptual point of view, the ArchOS operating system consists

of the ArchOS kernel and a set of subsystems composed of a set of cooperating system arobJects.

While the ArchOS system architecture description in the previous chapter discussed higher-l.vel

views of the system structure, this chapter focuses on how each subsystem is built based on

cooperating arobiects.

6.1 Overview

The ArchOS system design description discusses the internal architecture of ArchOS focusing on

the ArchOS kernel and subsystems. The ArchOS kernel provides basic mechanisms for ArchOS

facilities and each subsystem implements each service facility of ArchOS.

As discussed in the previous chapter, the ArchOS kernel consists of two layers: the lower layer is

the Alpha subkernel and the higher layer is the ArchOS base kernel. On top of the base kernel, a

kernel arobject can be managed to increase the concurrency within the base kernel. ArchOS

provides a system-wide arobject environment on top of the ArchOS kernel. Since ArchOS facilities

are implemented by cooperating system arobjects, they can be modified, added, or deleted without

having a major cost.

A subsystem consists of a set of cooperating arobjects which can provide the actual services to

clients. In general, each component of the subsystem is replicated on each node. so a system-wide

service is provided as the result of interaction among components. Each component also has the

responsibility to recover from so-called "clean and soft failure" [Bernstein 83] at a node. 3The chosen

recovery sequence maintains the consistent state of the server.

In the following sections, we describe the ArchOS kernel and each ArchOS subsystem focusing on

its internal structure, key algorithms, and inter-server protocols.

3 We limit our discussion of resiliency against "clean and soft" failure in which some of nodes of the system simply stop
running and oos the contents of main memory, but the contents of stable storage used by the failed nodes (computers)
remain intact.

119

6.2 ArchOS Kernel

6.2.1 Overview of Kernel

The ArchOS Kernel is a virtual machine that provides basic service mechanisms necessary to

support the ArchOS operating system. The abstractions provided at the kernel interface are not all be

implemented directly, however. Thus, the kernel as presented to clients is built by projecting

components of the kernel's internal structures and enhancing those projections as necessary to

achieve the client interface.

Internally. the kernel has a logical structure that is in three levels. The lowest level, called the

executive level, interfaces directly to the hardware and provides mechanisms to control physical

resources and some internal kernel resources on a per-node basis. These mechanisms inciude

management of physical memory, processor dispatching, virtual memory. communications, process

management, and primitive objects.

Above the executive is the subkernel. The subkernel implements some support required for clients

that is not required within the executive level, and it provides primitive support for inter-machine

coordination. In particular, it supports client synchronization primitives and primitive transaction

coordination. The current implementation of the subkernel for ArchOS is known as Alpha.

The subkernel supports the kernel layer, which then implements the client interface. The kernel

layer contains supp(rt for compound transactions, and support for aroblects. The kernel layer also

provides such access as is necessary for clients to subkernel and executive services. For example, a

client's request to create a process will result in the kernel layer making a request on the executive

layer that a process be dispatched from a pool of waiting processes. The pool is not Wisible to clients,

however. The view at the client level is of a new process being created.

Figure 6-1 shows a diagram of the kernel structure.

6.2.2 ArchOS Alpha Subkernel

The Alpha subkernel will be described in terms of its major functions. The logl.al diagram above

presents basic dependencies: higher level functions use lower level ones. A system as complex as

ArchOS does not always exhibit such a clearly hierarchical set of dependency relations, however

Thus, the diagram should not be viewed as describing all allowable interactions. The subkernel's

functions will be described from the lowest levels, moving up.

120

ArchOS Kernel:

Kernel Arobjects

Base Kernel:
Arobject/Process Management

Arobject Operation Invocation
Alpha

Subkernel:

Primitive Transaction Coordination
Client Synchronization

Executive:

Virtual Memory: File Mechanisms
Paging, Recovery
Swapping...

Invocation Mechanisms, Virtual Memory Support
Inter-process Communication

....... sa ..e
Process Pool Management

Dispatching, Kernel Synchronization

CommunicaLions

............ .Py.s.i.cal. Memory. M.anagement

Hardware

Figure 6- 1: Logical Structure of ArchOS Kernel

Hardware:

The Aloha subkernel is designed for a wide class of machines. The first implementation of the kernel

requires that machines have standard virtual memory with fixed size pages, and may have one or

several processors. Duties are assigned to processors on a functional basis, For example, one

processor might handle client processing, one might be assigned to basic operating system

processing, and one to inter-node communication.

Physical Memory Management:

Two sets of services are provided within the kernel to manage physcal memory. The most basic

mechanism provides a pool of pages These pages can then be used for client processes objects or

for specific keiiel functions. The number of free pages at any time serves as .nput to the pzi,;ng

system, .hich will page out portions of client processes and oblects if the numb.-,r ,)f free pci(.jts is

ever nsufficvent. Thus, at any time it is possible to allocate a page quickly in response to a ,eniand.

121

A second mechanism controls allocation of memory in portions that are smaller than a page. This is

called the kernel .7eap. The kernel heap must use the page allocation mechanism. Areas from the

kernel heap are used to contain basic kernel data structures, such as object control blocks and

message headers.

Communications:

Within the kernel, simple communication services offer direct communication with other nodes and,

where applicable, access to network services such as broadcast. These services are on a best-effort

basis. The kernels communication services will transmit a message, for example, but ,dill not take

any action to ensure its arrival. Higher level software, such as the transaction coordination and

interprocess communication mechanisms, must use specific techniques for retransmission, duplicate

suppression, and other such requirements.

In multiprocessor nodes, the communications mechanisms permit receipt of messages on the basis

of 'og~cal criteria. Thus, it is possible, for example, 4o transmit a message addressed to a transaction,

instead of to specific nodes. If a node's communication system recognizes that the transaction has

visited the node, the message is passed to the operating system processor. Otherwise, it is

discarded.

Kernel Process Support:

Within the kernel, a pool of unassigned processes is maintained. Each such process. called a kernel

process, is partially constructed. Kernel processes are dispatched for several purposes. For

example, a kernel process may be used to handle an incoming invocation, to controi the virtual

memor/ system, or it may assume a client process identity. This last case occurs in response to a

request by a client to create a process.

Several specific mechai-;sms are required to support kernel processes. Cnvc ntional mech'inisms

are used to switch process contexts and dispatch processes. Low-level synchronizatricn meI1.nsms

are provided: semaphores to control mutual exclusion, and memoryless events to indicate

occurrence of repeating conditions. One such event is used to indicate changes in the state of the

unassigned process pool. When this event is caused, a maintenance process is i.woKen If the pool

.s ;ow, 'his process will create more processes for the pool; f the pool s too mii~jh sorne pro esse3

from the pool will be discarded. This mechanism permits fast 'Jispatch when 1ruc,);sses ,r,. ne.eded

ty performing pool maintenance in the background.

122

Invocation Mechanisms, Interprocess Communication

Each component of a client's system, whether process or object. is assigned an independent address

space. Interactions between components may require modification of the address space to make

parameters and messages accessible to their recipient. Furthermore, such data must be eXamined by

the kernel. to determine their destination. A set of mapping mechanisms support these requirements

by permitting the Kernel to map and remap pages between address spaces and into the 'ernel's

address space.

!nvocation of operations on primitive objects is accomplished by mcdif,ng the lnvormng process s

address space to make the object's data accessible. The invoking process then executes code .vthin

the object. In the case that the object is not resident on the same machine as the invoking process, a

process is dispatched from the pool on the machine containing the oblect, and it is this process that

represents the calling process during the invocation.

Messages may be transmitted between system components by executing seria and receve

operations at the level of the client interface. These operations are then translated by the kernel

software into modifications to the address spaces of the communicating processes and. ,vhere

necessary, communication between nodes supporting the communicating processes. Support for

this is provided in the subkernel's virtual memory mapping mechanisms.

Virtual Memory:

A system component's virtual address space can exceed the amount of availaDle memory Also.

objects may not be accessed for long periods. Paging, swapping, and primitive tile system

mechanisms support the necessary abstractions. Although it is not visible to an ArchOS client, a

process or an object may have components of its address space, or its entire stater vritten to

secondary storage.

Although there is no specific need for direct client access to a file ---/Stem in an Cbp,-t system

support is provided to permit a client to modify portions of its address space Thus. t :s Qosible m,1i

a portion of a client address space into a portion of a specific file. This permits construction of files

that are larger than the maximum address space. The support provided also permits files, especially

code files, to be shared between system components.

Client Synchronization Mechanisms

Pithin the kernel, semaphores and events permit control of access to kerneI structur,2,., such a s

control IcloCks. Similar access controls and(concurrency control ecjhn,*;m2 must ,:ir',,id, ,

123

clients. However, use of such features depends on the internal state of client objects. and client

objects can be swapped from main memory, while kernel structures cannot. A set of higher level

mechanisms u.,e the kernel's synchronization mechanisms to implement facilities than enable clients

to construct mechanisms that function similarly.

Primitive Transaction Coordination:

Transaction support for ArchOS is implemented in two portions. Higher level requirements, such as

support for compound transactions, are implemented above the subkernel. The subkernel

implements only support 'or the most elementary nested transactions Support is provided for oblect

operation invocation, transaction completion -. either commit or abort .- and orphan elimination A

new technique discussed in [Mckendry 85] permits bounds to be placed on the time until lock release

as a result of aborted transactions. This feature will assist in scheduling transactions in real time.

6.2.3 ArchOS Base Kernel

The ArchOS base kernel uses facilities implemented by the Alpha sub.kernel to provide basic

mechanisms for ArchOS facilities, thus creating a uniform arobject environment for system arobjects.

Since the ArchOS kernel is not a traditional monolithic kernel, a set of kernel arbojects are running on

the top of the base kernel and supporting necessary low-level functions for ArchOS facilities.

The major functionality of the base kernel can be summarized as follows:

* Creation and destruction of kernel arobjects and processes

" Communication between kernel arobjects

* Dispatching mechanism for the time-driven scheduler

" Address space management for time-driven virtual memory manager

" Low level synchronization between processes and interrupt/trap

In other workds, the basic kernel is responsible to perform local resource manage-mrent for cre;1t;rg

and destructing kernel oblects and for invoking its operations. Any remote or system-wide resource

management decisions are decided based on coordination among kernel aroblects

3.2.3.1 Kernel Arobjects and Processes

The ArchOS base kernel provides creation and destruction of a kernel 7irobjec! n t3 rc,:e ,,rn,l

arobject is similar to a normal arobject except that it resides in a kernel addresS 7.pli., Jril ,har(,-, Wi.:

address space among the other kernel arobiects. Similarly, all rf 1h,- ,trni rhc.', Ir , t,:r

address space even though each process Io,}ically belongs to a specific il-n .irr t,,.(

124

Binding of a Kernel arboject/ process and a reference name is aiso managed in the same vvay.
Unlike a client's reference name, a kernel arobject's reference name is treated as a "well-known"
name representing a service class.

The following normal ArchOS primitives are used to manage kernel aroblects and processes.

arobject-id =CreateA roj bect(arobi -name [, init-msgj)
process. id C reateP rocess(process- name [, init-msg])
val =KillArobject(aid)
val =KillProcess(pid)

aid = SelfAido
paid = ParentAid(aid)
pid = SelfPid()
opid = Parent Pid(pid-x)

val =BindAroblectName(aid, arobj-refname)
val =BindProcessName(pid, process- ref name)
val =Unbind A ro bjectName(aid, arobj-refname)
val a UnbindP rocessName(pid, process- ref name)

aid =Find Aid(arob -ref name)
pid =Find Pid(process- refname)
aid-list z Find All Aid(arobi-refname '
pid-list = Find AlIPid(process-refname)

AID arobject-id The unique identification of the instr-ntiated arobject.

PID process-id The unique identification of the instantiated process.

AROE~j.NAME arob; name
The name of arobject to be instantiated.

QQCCESS- ANAE process- name
The name of process to be instantiated.

MESSAGE *init-msg
A pointer to the initial message which contains initial parainetars for the INITIAL
process.

APOBJ.PEFNAME arobi-retname
The requested reference name for i~n arobfect given by aid

PPO3CESS-REFNAME process rntname
The requested reference name for a process given by pid

AID-LIST aid-list The list of rorresoonding aid's.

125

PID-LIST pid list The list of corresponding pid's.

AROBJ.PEFNAtME arob;-refname
The reference name of related arobject(s).

PROCIESS-REFINAME process. retiname
The reference name of related process(es).

It should be noted that the above primitives are identical to the ordinary ArchOS primitives clients

can use, but only local creation and destruction of kernel arobjects and processes are supported in

the ArchOS kernel. When an instance of a kernel arobject or process is created, an ordinary arobject

or process descriptor will be created and managed uniformly at the kernel. (The description of the

arobject/process descriptor is given in Section 4- 1).

6.2.3.2 Kernel Communication Management

The ArchOS base kernel provides a local communication mechanism among kernel arobjects. A

'Kernel arobject can invoke an operation at a single destination aroblect or at multiple aroblects

providing the same service name (i.e., sharing the same reference name).

trans-id = Request(arojj-id, opr, msg, re-ply-msg)
trans-id = RequestSingle(arobi-id. opr. msg)
trans-id = RequestA IlI(arobject- name, opr, msg)

pd= Get Reply(trans-id, reply- msg)

(trans-id, requestor, opr) = AcceptAny(opr, msg)
(trans-id, opr) = Accept(requestor, opr. msg)

ptr-mds = CheckMessageQ(qtype, requestor, opr, req-trans-id)

trans-id = Reply(pid, req-trans-id, reply-msy)

TRANSACTION-1O trans-id

The transaction id of the transaction on whose beri the request is being made.

AID arobl-id The unique id of the receiving arobject.

OPE-SELECTOR opr
The name of !he operation to he -'erformed,

.MESSAGE *msq A pointer to the message wjhich r~cntdimis !hr? paramcel-.ro ;f th. up-oitiun to be
performed. The message tn 'hP de:;tIinarion orcbl-ic must not -oitailn any
pointers (i e .call- by- %alUe ',Emaitc OC mU'.t b-, used)

126

REPLY-MSG "reply-msg
A pointer to the reply message.

MSG-DESCRIPTORS ° prt -mds
Pointer to a list of the message descriptors selected by the specified selection
criteria.

MSG-Q qtype This indicates either "request-" or "reply-" message queue.

AID requestor The aid of the requesting arobject.

OPE-SELECTOR opr
The operation to be performed. The "opr" parameter can be a specific operation
name or "ANYOPR".

TRANSACTION-ID req-trans-id
The transaction id of the corresponding RequestSingle or RequestAll primitive.

6.2.3.3 Policy Management

The policy management provides system functions to add, delete, and modify the policy definition

module in ArchOS. Since the placement of the policy definition module is a major issue in terms of

the system performance, ArchOS allows a client to specify the location by using a policy definition

descriptor. The policy definition module consists of a policy body and a set of policy attributes. Both

the policy body and attributes can be modified at runtime.

,al = Set Policy(policy-name, policy-def-desc)
val = SetAtt ribute(policy-name. attribute-name, attribute-value)

pdd = AlIocatePDDO
val = FreePDD(pdd)

BOOLEAN val TRUE if the specified policy was set properly; otherwise FALSE.

POD policy-def-desc
A pointer to the policy definition descriptior.

ATTRIBUTE.NAME attribute- name
The name of attribute to be set.

ATTRIBUTE-VALUE attribute-value
The actual value for the attribute.

127

The SetPolicy primitive links a user-defined policy definition module to the ArchOS base kernel. The

SetAttribute primitive set a specific value(s) for its one of attribute. Since a policy definition descriptor

is maintained in the base kernel, any access to the actual policy body or a value of its attribute can be

easily made.

The AliocatePDD primitive allocates a policy definition descriptor in the base kernel and FreePDD

releases the allocated descriptor.

Policy ktef. module A

ArcriOS Kernel

Policy def. module 3

Bass Kernelr

Policy def. dssc. Policy def. module C

Figure 6-2: Policy DCcfrotion Module and POD

6.2.3.4 Time-driven Scheduling Management

The interface between the scheduler and the remainder of the ArchOS kernel is a simple one in

which the scheduler acts as a simple object providing operations and maintaining its own scheduling

data base. including its scheduling queue, These operations, of course, will not be available to the

ArchOS client, but will be used internally by ArchG7; to generate scheduling requests whenever

needed. The operations defined by the scheduler are as follows.

128

pid-list = Schedule()

pid-list = RequestSwapListO

SetSchedulelnfo(pid)

Deschedule(pid)

PID-LIST pid-list The list of pids.

PID process-id The unique identification of the instantiated process.

The ScneduleO primitive returns a list of the process ids (pids). The first pid indicates a process to

be executed at this time and the following pids are candidates for the following scheduling point. No

parameters are passed, and the scheduler makes its decision directly from the information within its

data base.

The RequestSwapListO primitive returns a list of the pids which indicates candidates for the

following swapping decisions at the virtual memory manager level.

The SetSchedulelnfo primitive enters the necessary scheduling information for the specified

process to the scheduler. The scheduler places the process pid and all its scheduling parameters

into its database and prepares for making the scheduling decision required when the next Schedule

operation is performed. This decision-making process operates continuously, concurrently with the

applicaticn processing, preparing its next scheduling decision.

The Descedule primitive removes a process pid from its queue, updating its current scheduling

database to prepare for the next Schedule operation.

The Scheduler will use the interrupt mechanism in the processor running the ArchOS kernel to

invoke other kernel mechanisms when it makes relocation decisions or must make decisions

regarding process scheduling with respect to other nodes. In addition, the interrupt mechanism will

be used to interrupt the kernel and application processing when sufficient time has elapsed that the

current scheduling decision must be reconsidered.

129

6.2.3.5 Address Space Management

The base kernel provides a number of primitive, though powerful mechanisms for constructing,

manipulating, and accessing the definitions of the virtual address spaces of processes. A process'

virtual address space (or simply address space) is illustrated in Figure 6-3. An address space consists

of four non-overlapping regions:

1. Kernel Region:
The Kernel Region is identical for all processes, and is only accessible when executing in

kernel mode. It contains all of the kernel code and data structures. The kernel is shared

by all processes and (at least in the initial version of ArchOS) will be non-pageable.

2. Private Region:
The Private Region is unique for each process, and it consists of five segments: Kernel

Stack Segment, User Stack Segment, User Heap Segment, User Data Segment, and User

Text Segment. Each of these segments will be discussed below.

3. Shared Region:
The Shared Region is unique for each arobject, but shared by all processes within an

arobject. This region contains all of the arobjects private abstract data type instances,

along with the code for accessing and manipulating them. It consists of a variable

number of segments, one (or more) for each instance of a shared abstract data type, plus

a Shared Text Segment and Shared Headers Segment. Each of these different types of

segments will be discussed below.

4. Kernel Interface Region:
The Kernel Interface Region is quite small, and primarily contains the code and data

areas needed for switching between user and kernel modes. This region is shared by all
processes and is npn-pageable.

The Kernel Region and Kernel Interface Region are of fixed size, and the virtual to physical address

maps for these regions, as well as their protection attributes, do not vary from address space to

address space (process to process), or during the lifetime of an address space. As a result, these two

regions are constructed automatically whenever a new address space is created, and never altered

thereafter. The remaining portion of an address space is comprised of the Private Region and Shared

Region. The relative sizes of these two regions can vary from arobject to arobject. However, within

an arobject, all processes share the same Shared Region, and hence all processes within a single

arobject will have identically sized Private and Shared Regions.

The Private Region and Shared Region each consist of a number of (non-overlapping) segments, of

var/ing sizes and types. The different types of segments have corresponding protection attributes.

Some segments are required for each address space, while others are optional. Some sejments can

be expanded (assuming they have space to grow), while others have a fixed size once allocated. The

relative locations of the various segments are somewhat constrained, and as a recutt, the order in

130

Kernel Region

Kernel Stack

User Stack

Free

Private Region
User Heap

User Data

User Text T

Shared Headers

Free

Shared Normal

Shared Atomic

Free Shared Region

Shared Permanent

Shared Atomic

Shared Permanent

Shared Normal

Shared Text

/\

Kernel Interface

Region

Figure 6-3: Virtual Address Space (One per Process)

which the segments can be (dynamically) allocated is similarly constrained. Each allocated segment

has an associated page set, which is used as the paging area for that segment (see Section 6.7 for a

description of page sets). The type of page set associated with a segment (temporary. permanent, or

atomic) depends upon the type of the segment.

131

Private Region Segments

The Private Region contains five distinct segments, whose relative locations must be as shown in

Figure 6-3:

Kernel Stack Segment:

The Kernel Stack Segment has a fixed size, which is the same for all address spaces, and is always

located at the top of the Private Region. This stack is only accessible while in kernel mode. and it is

'substituted" for the User Stack (see below) as part of the operation of switching to the kernel. Since

the Kernel is not pageable, the Kernel Stack Segment is also not pageable. Like the Kernel Region

and the Kernel Intorface Region, the Kernel Stack Segment is constructed automatically whenever a

new address space is created, and never altered thereafter.

User Stack Segment:

The User Stack Segment is a required segment, and is located immediately below the Kernel Stack

Segment. It can vary in size from address space to address space, and during the lifetime of an

address space. The User Stack Segment is the only segment in the Private Region which grows

downward. All other segments are either fixed size or grow upward to include larger virtual

addresses. The User Stack Segment contains the subroutine stack (including parameters and ocal

variables) *Nhile a process is executing in user mode. Hence, this segment must be both readable and

writable from user mode. The User Stack Segment is pageable and should be associated with a

temporary page set, which is to he used as the paging area.

User Text Segment:

The User Text Segment is also a required segment, and it is located at the bottom of the Private

Region. It contains the code to be executed by the process, and hence its protection is set to allow

only execute access while in user mode. The User Text Segment can vary in size from address -pace

to address space, but once allocated it never changes.4 This segment is paqeable and shculd be

assoc;ated with the permanent page set which contains the code for the process. Note that since the

User Text Segment is not writeable, only "page-ins" (and no "page-outs") will ever be required.

Furthermore, in order to reduce primary memory requirements, the Time-Driven Virtual Memory

Subsystem (see Section 6.10) will arrange for User Text pages to be shared among all processes

executing the same code on a single node.

User Data Segment:

4 Cue 7o !imitations m tne lanquaeie compuers and linker., the User Text , ,rwqr Fit my G iim h, .cd 'or f ori:re

arCl :ect. rither than just the -ode required by a sinqile process In that case thQ IJoer Tes;t , , frr r i jrnc'- i thin i

s inle irn'blect ,vil have the same size.

132

The User Data Segment is not strictly required. but it will almost always be present. It is located

immediately above the User Text Segment, and should be allocated after the User Text Segment has

been specified. The User Data Segment contains the "global", initialized variables that are used by

(and private to) the process. It is both readable and writable while in user mode. The User Data

Segment can vary in size from address space to address space, but once allocated it never changes.
5This segment is pageable and should be associated with the permanent page set which contains the

initialized data for the process. However, only (initial) page-ins will ever be performed using this page

set, so as not to destroy the definitions of the initial values. All page-outs and subsequent page-ins

will be to the same temporary page set used as the paging area for the User Stack Segment.6

User Heap Segment:

The User Heap Segment is not strictly required, but it too will almost always be present. It is located

immediately above the User Data Segment, and should be allocated after the User Text Segment and

User Data Segment have been specified. The User Heap Segment contains the dynamically allocated

variables that are used by (and private to) the process. It is both readable and writable while in user

mode. The User Heap Segment can vary in size from address space to address space, and during the

lifetime of an address space. Note that since the User Heap Segment grows upward while the User

Stack Segment grows downward, expansion of these two segments cause additional space to be

allocated frcm opposite ends of the (single) f re area within the Private Region The User Heap

Segment is pageable and should be associated with the same temporary page set which is used as

the paging area for the User Stack Segment.7

Shared Region Segments

The Shared Region contains five distinct types of segments, although there can be multiple

segments of a particular type. Also, the placement of those segments within the Shared Region is

somewhat more flexible than the placement of the segments within the Private Ru~jijii. ThU yentifai

structure of the Shared Region is illustrated in Figure 6.3. Note that the entire ShareI Region ,s

optional. and will only be present if the arobject definition includes one or more private -bctract data

5 As in the case of User Text Segments, limitations n the language compilers and linkers may cause the User Oita Segmtit s
for aii processes Nithin a singe arobiect to have the same size.

Eimuiltpie segirents can use the same page set for pigng puriror-,s, by mapping the ,irtual _ac~e ndrto'rns ,vilr no
warfOus segments directly onto thi-. same page numbho,, .ithin the paqe .,t. 1e jirtual wa'je A ,ets inapp,,J mot-1 .Je nunib, U
, Since segments do not overlap. the corresponding p.ging areas ,oill not overlap either See Section 67 or more lJails on
'he use of the page set tacilities

7
f desired. 1 .onarlte iternpornr/) page Sd couid be used, ailoingr paging to dittererit itksi, or e ve.n Jfrn ndon;.

133

type definitions. Also note that the Shared Region is identical for all of the processes (address

spaces) which belong to a single aroblect, and are resident on a particular node. As a result, the

Shared Region should only be modified in a single address space on a given ncde, in order to have all

of the related address spaces on that node updated simultaneously.

The types of segments that can appear in the Shared Region are the following:

Shared Text Segment:

There is a single Shared Text Segment, and it must be present whenever the Shared Regiun ?<sts.

It is located at the bottom of the region, and contains the code which defines the permitted operations

on the arobiect's private abstract data types. The Shared Text Segment permits only execute access

while in user mode. However, it is assumed that this code will always be entered "indirectly", by first

determining which abstract data type instance is to be operated upon, and then directly invoking the

requested operation with the specified instance as a parameter. Furthermore. it is assumed that

operations will only be directly invoked on instances which are located on the local node.BThe Shared

Text Segment can vary in size from address space to address space, but for a given arobject. once it

has been allocated it never changes. This segment is page able and should be associated with the

permanent page set which contains the code for the operations defined on the arobject's private

abstract tata types. Note that since the Shared Text Segment is not writeable, only page-ins (and no

page-outs) will ever be required. Furthermore, in order to reduce primary memory requirements, the

Time-Driven Virtual Memory Subsystem will arrange for Shared Text pages to be shared among all

processes executing the same code on a single node.

Shared Headers Segment:

There s a single Shared Headers Segment, and it too must be present whenever the Shared Region

exists. It is located at the top of the region, and contains the "header" information descrbing all

instances of private abstiact data types that have been created within "e arbjec. T, .;.........

information includes the node on which each instance is located, and the address(es) cf the ?hared

Normal Segment, Shared Permanent Segment, and/or Shared Atomic Segment associated with each

instance. The header information is used whenever operations are to be invoked on specified

abstract data type instances, and hence the Shared Headers Segment allows read-only access While

3Abstr3Ct data type instfances can be distributed throughout the nodes of the: computer sy ,tim .V ',C! uri ,a 1rij), i'.torice

Aiil alovoys be completely contained wilhin a single node The indirect nv-cation of an operiilon in Ir i i. i ~t .I;iit l,'e

nst,irce 'nvolves first using the nformation in the Shared Headers Segment ti) delermlne .hicrn nocdJe ,ntains W , nrstlrmi n

iueztnn if the instance is on the local node. the operation can be invoked di',,:tly Hlow.-vrr. ,t !'e l,taCe ,; J, i i,.-mote

node rcem of remote procedure call (rPC) is used rn order to invoke the)ipuration rin tt I r, iiol node. "..*, :;, Uhlion

PPCSEC for more detils on 'he use of the PC fcility to implernent distributed private .bt',tract .;.lal types

134

in user mode. The Shared Headers Segment can vary in size from address space to address space.

and during the lifetime of an address space. However, within a single aroblect. all address spaces will

have identical Shared Headers Segments. The Shared Headers Segment is the only segment in the

Shared Region which grows downward. All other segments are either fixed size or grow upward to

include larger virtual addresses. The Shared Headers Segment is pageable and should be associated

with a temporary page set, which is to be used as the paging area. Note, however, that the Shared

Headers pages are shared among all of the processes of a single aroblect, which are executing on a

particular node.

Shared Nor-mal Segments:

There can be multiple Shared Normal Segments within the Shared Region, one for each abstract

data type instance which contains "normal" shared data. These segments can be located almost

anywhere within the Shared Region. above the Shared Text Segment and below the Shared Headers

Segment. However, successive segments will normally be allocated immediately above the Shared

Text Segment and any other existing Shared Normal, Shared Permanent, and Shared Atomic

Segments. The lifWtire of a Shared Normal Segment may be shorter than the lifetime of the address

space, since abstract data type instances can be created and destroyed dynamically. Shared Normal

Segments permit both read and write access while in user mode, since these segments contain the

normal shared variables which define the current states of the abstract data type instances. In

addition to being dynamically created and destroyed, Shared Normal Segments can be expoilded

(grown), to support the dynamic allocation of shared normal variables. Note that since these

segments grow upward while the Shared Headers Segment grows downward, the free area near the

top of the Shared Region (immediately below the Shared Headers Segment) will be allocated from

opposite ends, reducing the chances of conflict. Shared Normal Segments are pageable and should

be as.ociated with temporary page sets, which are to be used as theopaging areas ONote that Shared

Normal pages, like Shared Headers pages, are shared among all of the processes of a single arobject,

Which are executing on a particular node.

Shared Permanent Segments:

Shared Permanent Segments are almost identical to Shared Normal Segments, except that they

contain the "permanent" shared variables which define the current states of the abstract data type

instances. Also, each Shared Permanent Segment is associateo with a permanent page set, which is

s; is pos ,ble to use a single temporary page set as the paging area for all Shired Normal Segmets, ir ,.itil is tihe : ,ifd

Headers Segment However, the use of separate page sets allows the individual paging ,eas to be ioc:tfed)n the n;n ,A s

as their c-rresponding abstract data type instances, increasing officiency In 3ddition. it makes t risier to 'ho .hrar-Ad

Normal Segiments. and to move them around within the Shared Pegion (This latter operntion may be ,'euirld in i..rdo_.r to i.,,'IJ

conflicts ,t-,en exn.nding existing segments)

135

used as both its paging and permanent storage area. 10

Shared Atomic Segments:

Shared Atomic Segments are identical to Shared Normal and Shared Permanent Segments in most

respects. except that they contain the "atomic" shared variables which define the current states of

the abstract data type instances. Because of this, each Shared Atomic Segment is associated with an

atomic page set, which is used as both its paging and atomic (permanent) storage area." In order to

determine which portions (variables) within Shared Atomic pages have been modified by various

transactions. direct writing to the Shared Atomic Segments is not permitted while in user mode (these

segments are read-only in user mode). Instead, the special AtomicCopy primitive must be used in

order to modify any atomic variables. As each modification is made to a Shared Atomic page, the

AtomicCopy primitive also records the modification in the associated atomic page set. This permits

the modification to later be committed or aborted under control of the Transaction Management

Subsystem. Note that since each modification is immediately written to the atomic page set, there will

never be any need for the Time.Driven Virtual Memory Subsystem to page-out Shared Atomic pages.

Also, page-in operations only require the Shared Atomic page to be read from the atomic page set.

since ,he Atomic Page Set Manager will ensure that the page, as read, will reflect all outstanding

(uncommitted) modifications. 12For more details on the handling of atomic oblects and transactions,

see Section TMSEC.

Address Space Management Primitives

The base kernel provides primitives for creating and destroying address spaces, for allocating,

freeing, growing, and moving segments within an address space, and for accessing and modifying the

information associated with each virtual page within an address space (mapping, flags, and time of

1
0 Again. it is possible to use a single permanent payje set to hold all of the Shared Perm.anpint Segments. but 'he s3me

considerations as for Shared Normal Segments make the use of separate page sets a bit more attractive.

11In this case too it is possible, though slightly less attractive, to use a single atomic page set to hold all of the Thared

Atomic Segments.

12
.rhe consistency of the atomic data values accessed and modified by a transaction is not pi.lr.in!'..d hy h. s, f wii il s.

unless the correct locking protocols are followed. It is assumed that the appropiiate read ind m.l 'o s 3re Jht ir,, , -ch

atmic Jaia tern that is to he accessed or modified, respectively Also note that transaction aboWr'; r'quire oltolif 01f, u tomic

Page Set Manager of the abort, and also undoing all of the aborted modifications tn ill f the .ittwJr. A,ilfred p,1: riiqe5

This latter operation is best racomplished by simply flagginrg all of the affected pages as 'invalij ;o hit th' nr-I l l inl to

access ?hem Nil result in a page-in operation. Since the mcdlifications assiaciatd vith thi, hiti r;in2Sii T(i .io h

removed from the atomic page set. the page.in operation will read the proferly mrnlitid cont;rits <;f 1ho pa(je

136

last access).13 The actual address space management primitives provided by the base kernel are the

following:

val = ASCreate(asid [, nvp-shared])
val = ASoestroy(asid)
val = ASActivate(asid)

vpa =ASAllocate(asid, seg-type, nvp, gpsid fdesired-vpa])
val =ASFree(asid, vpa)
val =ASExpand(asid, vpa, nvp)
val =ASMove(asid, vpa, desired-vpa)

ste =ASGetSTE(asid, vpa)
ste =ASNextSTE(asid, vpa)

vai ASSetMap(asid, vpa, ppa [, nvpJ)
ppa =ASGetMap(asid, vpa)
val ASSetFlags(asid, vpa, flags [, nvp])
flags = ASGetFlags(asid, vpa)
val = ASSetTime(asid, vpa, time [, nvp])
time = ASGetTime(asid, vpa)
val = ASSetPTE(asid, vpa, pte [, nvp])
pte = ASGetPTE(asid, vpa)

(gpsid. pnum) = ASGetGPSID(asid, vpa)
(asid,v'pa, ppa) = ASFindShared(gpsid [, pnum])

BOOLEAN val TRUE if the specified operation is completed successfully; otherwise FALSE.

VIRT. PAGE- AD DRESS vpa, desired-vpa
A virtual page address within an address space.

SEG- TABLE- ENTRY ste
A descriptor for a Segment within an address s-ace. !t nc-Iudes the -segm ent type
(seq-type), location (vpa), size (nvp), and associated page set (gpsid).

PHYS- PAGE -ADDRESS ppa
The physical page address in primary memory, to which a virtual page address is
mapped.

PTE.FLAGS flags The set of (BOOLEAN) flags associated with a particular page in an address
space: USED, MODIFIED, VALID, EXISTS, and COPIED.

13 No facilities are provided for accessing or modifying the protection codes governing access to the various paits of nn
address space. These protection codes are set automatically whenever the address space is created, and Nhenever new
segments are allocated. There should never be any rned to modify them explicitty.

137

VIRT. TIME time The (approximate) virtual (CPU) time at which a particular p3vje in an address

space was last accessed

PAGE TABLE-ENTRY pte
A descriptor for a particular page in an address space It includes the
corresponding physical page address (ppa), flags, and last access time (time).

GPSID gpsid Global' Page Set ID, which identifes the page set associated with a segment. It
includes the ID of the logical disk containing the page set, the page set type
(TEMPORARY. PERMANENT, or ATOMIC), and the unique 0D of this page 5et
within the logical disk.

NT pnum A page number within a page set, corresponding to a virtual page within an
address space segment.

ASID asid Address Space ID, which identifies the address space to be operated upon. The
corresponding process ID can be easily obtained from an ASID, and vice versa.

NT nvp shared The number of virtual pages (size) of the Shared Region.

SEGMEjNT'rYPE seg-type
The type of the address space segment to be allocated: USER-STACK, USER-
TEXT, USER-DATA, USER-HEAP, SHARED-TEXT, SHARED-HEADERS, SHARED-
NORMAL, SHARED- PERMANENT, or S :HARED- ATOMIC.

NT nvp The number of virtual pages involved in the operation.

On Error: Error conditions are indicated by the use of special return values. The details
concerning the precise nature of an error condition are provided in the Kernel
Error Block.

The ASCreate primitive creates a new address space, corresponding to a newly created process.

14 The address space 1D (asid), which is closely related to the process ID (allowing eiasy tra~nslation

back ard forth), must be specified as part of the operation. This asid will be used to identify the

address space in all subsequent operations. The size of the Shared Region (nvp-sniared) must 11so

be specified if this is the first address space belonqing to the corresponding aroblect to be created on

this node. Otherwise it is optional. 15 Since there is only a fixed, maximum amount of buffer space

1Itcan also be used to recreate an address space for a process Y'hiCh had been conmpletely 'S -apzc!-I)ul' but N111 .~cni

be '-ecuired to ruon again. See Section 6 10 for more details about orocess swapping,

is Since 'he sizes of the Kernel and Kernel Interface Regiones are fixed. specityirjI the ,izf- of ?he -2hrir-d 1 4-'ion mili i'-o

deterine .he SiLC of ihe Private Pegion (there are no other regionis in an address -spaCkji) Also f ~i,r *o, jr-Z -, ic.roi

the same 'irobiect aiready exists .)n ihis node, the sze of ihe Sharipd Rerpon is iiri.2dy 'noNn .iii ul r'. f~ri m lio,

same arobiect have identical S hired Regions) The arobiect 10 can be- easily JP!mtum,(.j ri !t-em %?be 1 !t ii Iii
process L).

138

available for storing address space detinitions. the ASCreate primitive can fail f too many address

spaces have already been defned.'6The ASCeltroy primitive can be used to destroy a previously

defined address space

- SAcrivate is used when switching processes. It makes the specified address space (asla) the

currently active one. 'e (t switches the processor to that address space. Note that since the Kernel

Region is identical for all address spaces, only tle Private and Shared Regions are actually affected

by this switch. The processor continues to execute the same code within the kernel as it was prior to

switcring address spaces. Depending upon the architecture of the system's memory management

hardware, activating an address space may require the explicit loading of many registers within the

Memory Management Unit (MMU). The management of these MMU registers is solely the

resoonsibility cf the address space management routines, especially ASActivate Of course, MMU

register maragement is simplified considerably if the MMU itself handles the loading of its mapping

registers, in the manner of a cache.

aSA,iocate allocates a new segment within an existing address space. The type of segment

(seg -',ce) determines many of its characteristics. In most cases only one segment of a particular type

is permitted within an address space. However, multiple SHARED-NORMAL, SHARED-PERMANENT,

ano SHA ED-ATOMIC segments are allowed. At the time a segment is allocated, its initial size (nvp)

and asscciated page set (gpsid) must be specified. 71n most cases the location of a new segment is

either 'ixed or can be determined automatically, assuming the various segment types are allocated in

the prccer order.18 However, the exact location for a new segment can be specified (destreci 1pa),

wnenever necessary. 9 'ASAIIocate returns the location (vpa) of the newly allocated segment. For all

segments except USER-STACK and SHARED-HEADERS, this is the location cf the first (lowest

address) page in the segment For USER-STACK and SHARED-HEADERS. the returned location is

the last page in the segment. The returned ,pa Nill be used to identify the segment in subsequent

ocnerations. ASAllocare will fail, returning BAD.VPA. if any conflicts are detected such as attempting

to allocate an already allocated segment type, or overlapping an existing segment.

i8One remedy for this is to swap out and then destroy one of the already existing address spaces.

17 'rhis ,mieS that the associated page sei must already exist.

18JPie -nie restrictions r'the ordering of :eiment allocations are that USER HEA'P must foilOw I. EP LATAr m.i : .n turn
must .ro,, jSEP TEXT ano- SHARED NOPMAL, SHARED-PEPMANLNT. or ',HAPE0 ATOMIC 'e,jments must ti. Jillicated

atter "$e SHAPED.TEXT segment

'g-his should only be nec's. ,Sary when constructing the Shared Pelion on .i rie'w node o 'h'iI t r-itches the hrd
Pejgion lor in arobiect that already exists on ciier nodes.

139

ISF-ee deletes an entire segment. indicated by Pa, within the specified address space (asci). Only

SHARED-NORMAL. SHARED-PERMANENT, and SHAREDATOMIC segments can be freed.
2°ASExoana increases the size of an existing segment by the specified number of pages (nv)). It will

fail itf there is insufficient space for the segment to grow by the amount indicated. ASMove changes

the location of an existing segment from va to deslred-vpa. Only SHARED-NORMAL. SHARED.

PERMANENT, and SHARED-ATOMIC segments can be moved. 21ASMove will fail if the new location

for the segment would overlap another existing segment.

,3Sa eS-E returns a descriptor for the segment which contains the spec:fied jirtual page (vpa).

This cescriptor indicates the segment's type (seg-type), location (vpa), size (nvp), and associated

page set (gpsic). BAD-STE is returned if the specified page is not within one of the existing Private

Region or Shared Region seg~nents. 22ASNextSTE is similar to ASGetSTE. except that it returns a

descriptor for the next (higher aodress) segment which follows, but does not contain, the specified

virtual page. Specifying vpa = 0 will cause the descriptor for the first (lowest address) segment in the

Shared Region (SHARED-TEXT) to be returned, or the descriptor for USER-TEXT to be returned if

there is no Shared Region. BAD-STE will be returned if the specified page is within or beyond the last

segment of the Private Region (USER-STACK). ASNextSTE is useful for scanning through all of the

segments (and pages) which constitute an address space.

ASSerMap sets the virtual to physical mapping for virtual page vpa, to physical page ppa.

Optionally, a range of nvp virtual pages, beginning with vpa, can be mapped to contiguous physical

pages. beginning with ppa. ASGetMap returns the physical page address (ppa) to ,which the specified

virtual page (vpa) is mapped. BAD-PPA is returned if the mapping has not been previously defined

using IGSerMap (or ASSetPTE). ASSetFlags sets all of the (BOOLEAN) flags associated with the

specif'ed virtual page (vpa). Optionally, the flags for a range of nvp virtual pages. beginning with vpa,

can all be et to the same values (flags). The available flags are:

" USED: The virtual page has been accessed. This flag helps determine which pages
belong to the Norking set of a process (See Section 6.10).

" MODIFIED: The virtual page has been modified. This flag indicates that the page must be
written to the associated page set before the physical page frame can be reused.

,s nappaens s a result of destoyin llbstract data type instances.

2 1 ,,oving of segments can be 3 useful ,way to recover from ASE.xpand faliurpi.

2 2 r,;r our purposes ere. 1he Kernel Slack Segment ,s rot considered a part of th negr,. i,1i qion "n!,. il1 " IJ-,IAi?

se'rrents are

140

* VALID: The physical page address to which the virtual page is mapped is valid, i.e. the
page is in primary memory.

" EXISTS The virtual page exists in the associated page set, i.e. the page has been written
some time in the past. This flag helps avoid page-in operations when a newly allocated
virtual page is first accessed. 23

" COPIED- The virtual page (within the User Data Segment) has been 'copied" to the
temporary page set. i.e. the temporary page set contains a newer version of the page than
the permanent (initial data) page set. This flag only applies to the User Data Segment,
and it is used to indicate which page set is to be used when paging-in the virtual page. 24

ASGetFags returns the set of flags associated with the specified virtual page (vpa).

ASSetTime sets the time of last access for the specified virtual page (vpa) to time. The time value is

in virtual (CPU) time units. Optionally, the last access time for a range of nvp virtual pages, beginning

with voa. can all be set to the same value of time. ASGetTime returns the last access time for the

specified virtual page. NEVER is returned if the page has never been accessed ASSetPTE is

equivalent to ASSetMap, ASSetFlags, and ASSetTime combined It sets all three items of the virtual

page descriptor(s) (ppa, flags, and time) to the specified values (pte). Similarly, ASGetPTE is

equivalent to ASGetMap, ASGetFlags, and ASGetTime combined. ASSetPTE and ASGetPTE are

provided as a convenience, for use when entire page descriptors must Le modified or retrieved.

ASGetGPSID returns the global page set ID (gpsid) and page number (pnum) associated with the

specified virtual page. This is the page set ID and page number to be used when paging-in or

paging-out this virtual page.25 BAD-GPSID and BAD-PNUM are returned if the specified page is not

contained within any of the existing segments in the Private Region or Shared Region ASFincS hared

searches for the specified page number (pnum) from the given page set (gpsia), to see if it is already

resident in primary memory, and in active use within one of the existing address spaces. 26 1f pnum is

not specified, the search is for any active page from the given page set. If the search is successful,

23.L ,sn .ncnrrect to page-in a nonexistent page. It would simply be read as all zeros (see Section 6 7) However :,he
EXISTS flag netis avoid the overthead of the (unnecessary) page-in operation. Whether a nonexistent ppqe s nitia ized to zero
On firSt access or simply left indetined depends upon the type of segmInt it belongs to. User Stack Segment pages can be left
undefined, but pages in most other segments should be initialized to zero.

24'The COPIED flag is essentialy another name for the EXISTS flag, as it applies to the User Data Segment Ejch User ,ita
Seqmert oage -s inown to exist in the permanent (initial data) page set. The only question is Nhelher a ,ewer v'ersion also
xssts ,n the '-e porary Paqe set.

25-SGerGP',O !akes the COPIED flag into account when determining the oage Pet to be used for in the User Clata
Segment.

26-his r-voliP searchin, hrcjjh !he existing iddress spaces for any segments having oprid is hte correrl~ondnij p,)1'0
set The -,tu.i :ae descrioti 'o r 'he page corre~,ponding to orurn s then Checked to sne i it '; iAl-iD

141

the address space ID (asid) and virtual page address (vpa) of the first encountered matching .,ntry Is

returned, along with the corresponding physical page address (ppa). Otherwise BAD-ASID, BAD-

VPA, and BAD-PPA are returned. ASFindShared aids in the handling of "shareable" segments, such

as the User Text Segments and all of the Shared Region segments. In particular, it can help

determine if page-in or page-out operations are actually required.

Address Space Management Data Structures

The information describing the existing address spaces is contained within kernel data structures

called address space descriptors. These descriptors are :inked together in groups according to the

arobiects to which the address spaces belong, as shown in Figure 6-4. This aids in the handling of

the Shared Regions of address spaces, especially their construction and modification, since it allows

all of the related address spaces to be updated "simultaneously".

Arobject List

tall _1eau prey next 4 prey pet r e v net

SSpace ISpace Spc

D escriptor I Descriptor Desripor

Figure 6-4: Arobject Address Space Lists

The structure of each address space descriptor is illustrated in Figure 6-5. It basically consists of a

list of 3.-qmnent Oesc -otors, which describe each of the segments contained within the address

space ,Jote that since there can be varying numbers of Shared Normal, Shared Permanent, and

Shared Atomic Segments, each of these types has its own (sub)list of segment descriptors. Any

segment type which is not present in an address space would be indicated by a page count of zero

(nvp z 0). Each segment descriptor includes a pointer (pta) to the page table, which descrllbes the

state of the individual Dages of the seqment. Note that each address space within an aroblect will

actually have its own set of page tables, even for the Shared Regjion. This is because the Shared

Pegion can be accessed and used in very different ways by the different processes of an armbject,

and t :s important to determine the virtual memory "working sets" on a per process fpr address

soace) basis (see Section 6 10).

142

Address Space Descriptor

prey I next

asid Segment Page Table
Jser Stack Seyment Descriptor

Ioa I nvp I ;psi I pta / p flags time

User 4eap Segment Descriptor

User Data Segment Descriptor

Jser Text Segment ")escriptor Jirtual Page Descriutors

Shared Headers Segment Descriptor

Shdred TeA Sttjmient Descriptor

Shared Normial Segment Descriptor nex Shared Normal Segmient Des'criptor I e tl

Shared Permanent Segment Descriptor next

'Sared Atomic Segment Descriptor net hjred Normal Segment Descriptor ne.xat

Figure 6-5: Address Space Descriptor

The other main data structure used in the management of address spaces is the Shared Page Set

List, illustrated in Figure 6-6. The sole purpose of this structure is to improve the efficiency of the

ASFiniShared primitive.28Before paging-in or paging-out a potentially shared page, i.e. one from the

User Text Segment or any segment within the Shared Region, the Time-Driven Virtual Memory

Subsystem must first check (using ASFindShared) to see if the required page is already in main

memory and in use by some other process. If so, the paging operation can be avoided. Given the

global page set ID (qpsid) for the potential paging operation, ASFindShared will look for that gpsid in

the Shared Page Set List, and then check each associated Seqment Page Table to see if the page in

question is ever listed as "VALID". Thus, the Shared Page Set List contains an entry for every page

set corresponding to a User Text Segment or Shared Region Segment, in any existing address space.

Associated with each entry is a list of all the segments (indicated by their address space IDs, virtual

page addresses, and page table pointers), which share the use of that page set.

28 ,,nce Ihe Shared Page Set List coud be constructed ,oihoy from the roniln?5 of 'h Addre'js S ,ac Descriptors, ,is use is

not "_.;lroly reluired Howe,er, it)reatly increases the efficiency of searctinq for shared pages.

143

Shared Page Set List

gps Id head ,SdVPa >'a 'lx sd1a pt n et x- Id Z Palpa nixt

(jps id head -- sI Uvpa

Figure 6-6: Shared Page Set List

6.2.3.6 Synchronization Management

The low-level synchronization mechanisms for arobjects and for basic 1/0 handling functions are

provided at the base kernel. These primitives are designed as a local synchronization mechanism, so

remote invocation is not supported at this level. All higher-level synchronization must be performed

by using the communication primitives.

The following primitives are provided at the base kernel:

evtcnt = Sigsend(event-var)
evtcnt = Sigrec(event-var, timeout)
evtcnt = Sigrecai(event-var, timeout)
evtcnt = Sigabort(event-var, abort-code)

EVTCNT evtcnt The counter value of the specified event variable.

EVENT. VAR event-var
The event variable consists of a waiting queue of client processes and an event
counter.

TIMEOUT timeout The timeout value should indicate the maximum execution time for this signal
primitive including the waiting time.

ABOPTCODE abort-code
An integer value which indicates an abort code.

The Sigsend and Sigrec primitives are basically similar to the V- and P-ooerations of ain Intejer

semaphore. However, the Sigrec primitive will be timed out if the corresponding -i;nal (e q.. i

hardware interrupt) is not generated. A Sigrecal primitive is similar to Sajrec and used for reci.r-,vng

144

all stored event signals. A Sigabort primitive can be used to unblock the waiting process with an error

condition.

6.3 Arobject/Process Management Subsystem

The Arobject/Process Management Subsystem is responsible for providing arobject/process

management facilities in ArchOS. The subsystem consists of a Arobject/Process Manager and its

worker processes on each node. The Arobject/Process Manager provides a system-wide facility in

corporation with the base kernel. The workers are provided to perform actual work or decision

making among cooperating Arobject/Process Managers in the system.

The Arobject/Process Manager primary responsible the following operations:

" Creation and destruction of an arobject and process

" Freezing and Unfreezing of an arobject's or process's activities

* Binding and unbinding of reference names for arobjects and processes

" Allocation and deallocation of private data objects

" Internal access mechanisms to fetch and store any data objects for an arobject/process.

" Recovery management for atomic arobjects

It should be noted that many functions can be invoked locally by the base kernel. Thi. subsystem is

necessary to provide the service for remote invocations.

6.3.1 Arobject/Process Management

An Arobject/Process Manager exists on each node and manages a fixed number of workers. Every

worker can perform the foilowing service functions:

" Ccordinate with the other Aroblect/Process Manager to perform the best assignment
decision for creation of a new arobject/process instance.

" Propergate a new reference name to the other Arobject/Process Manager.

The basic components of the arobject/process subsystem is shown in Figure 6.7.

When a new instance of an arobject or process is created, a system-wide unique identifier called an

aroblect id (aid) or process id (pid) is created and is also guaranteed to be unique over the lifetime of

the aroblect or process. For a new instance of an arobject, an ararjecr descr'ptor Is created and

145

Known Arobject'Tble (KAT)

AP Manager

0 feterence Naine HashiCte (RNH)

Workers

Figure 6-7: Components of the Arobject/Process Subsystem

registered in the known arobject table in the kernel. For a new process instance, a process descriptor

is also allocated and linked to its arobject descriptor.

The arobject descriptor contains the following information to control its arcbject components:

" Arobject id (aid):
An aid is a fixed-length descriptor consisting of current node id, birth node id, and local

unique id. Aid is used to identify a destination arobiect where a request operation will be
invoked, so the current node id and birth node id are included for reducing the searching
process and migration process.

" Parent aid:
Its parent's aid.

" Arobject status:
Status of the arobject.

" Freeze/Unfreeze event variable:
An event variable to control.

* A set of reference pointers to private object descriptors:
A private object descriptor contains the data associated with the arobject's private object,
namely "processes", "shared abstract data types", "statistics data object", "message

queue", etc.

For instance, suppose that arobject A has two processes (INITIAL and P) and one shared private

object (SO,) and a new instance of A is created at node X. After the INITIAL process s .tarted, it

creates process P1 at node Y. Then, the relationship among the major kernel t~4, cts are hown in

Figure 6-8.

146

Arobject descriptor
(A) Pd (INITIAl) 1

-- " 11 Arobject descriptor (A)

Shared header Pd (Pi)

I--*Message desc. I _________

Shared header Shar e d

Witing cseg. desc. seg. SO

At Node X At Node Y

Figure 6-8: An example of Arobject Descriptors

At node X, an arobject descriptor is allocated for an instance of arobject A. A process descriptor for

INITIAL and a shared object descriptor for the header segment and for SO, are linked to the arobject

descriptor. At node Y, there are also an arobject descriptor for A and a process descriptor for P1

which is linked to the arobject descriptor. Although there is no shared private object created at node

Y, a shared object descriptor is also allocated for the header segment and linked to the arobject

descriptor.

It should be noted that the message queue of arobiect A is only allocated on node X. Thus, when P1

attempts to accept a request message, a remote operation is invoked to fetch a message from the

message queue at node X. t there is no acceptabe request mcsage in th quuc, P1 ':l t- b!ccd-.

and placed in the waiting processes' queue.

6.3.1.1 Arobject/Process Assignment Policy

When creation of a new instance of an arobject or process is requested at a non-soeciflic ,1ode, the

arobject/process manager selects the best node according to the current "arobject/process

assignment policy".

The assignment policy, like other user definable policies, can be set by a system desjgrer in orde.r

to reduce system overhead, the policy definition module for the assignment policy I.' placud ;n

Arobject/Process Manager.

147

Without creating a new policy definition module, the Arobject/Process Manager can provide the

following assignment policies.

* First Fit (FF): The first A/P manager which replies the creation request will be selected.

e Random Fit (RF): A A/P manager from the random selection will be used.

* Best Fit (BF): One of the best matched A/P manager will be selected.

9 Best Effort Fit(BEF):

6.3.1.2 Life cycle of Arobject/Process

The life cycle of an arobject depends upon whether the arobject is an atomic or nonatomic. When

an instance of an aroblect is instantiated, the arobject instance becomes active. If an arobject is

atomic, it can be inactivated and remained on stable storage. On the other hand, if an arobject is

nonatomic, it cannot be inactivated and it must be dead when it is killed. Atomic and norlatomic

arobject can be frozen for monitoring or debugging purpose.

The life cycle of process is similar to the arobject's one. When an instance of a process is created, it

becomes ready and runnable. Once the time-driven scheduler deciedes to run a process, it becomes

running and the process may block due to I/0 waiting or scheduler's preemption. Like arobject, a

process will be dead when it is killed and it can be also frozen. The life time of a process instance

depends on the life time of its arobject. When the arobject is killed, all of its processes will be also

killed by the system. Thus, there will be no frozen processes left in its arobject.

The life cycle of an arobject and process is depicted in Figure 6-9.

6.3.1.3 ArchOS primilives

The fcllcwing ArchOS primitives are supported for arobject/process management for a client.

.....0. -

148

Arobject Status:

waitin rorzee
waep bokfeeufreeze kill

cr a ere en r unnin
k dea

arbjctid=create~rjtaojnm [k iIsg [nd-dea

proessid Cr atercsrctiaessnae[,itms][noed)

val = Kll~ronactived

val KilProcess Status

val ~ ~ ~ ~ chdl GkilllArbec~rb-ikl-otos

Fa ~bI i res-pi opions)e fa AojctadPrcs

aid = elf-id()etArjbc (rb nm [nt-sl[oei]
pid = etid Crae oespoes ae[ntmg oei]
paid = PilAroent(aid)
vali = KiProenls(pid)

val =FreezqiArobject(arob-id, iloptions)

val = Freeze iP rocess(pid, options)

vald = UnreezeProcsspi otins

fval = FretchArobjectta(arob opidodnsb) d ufe ie
sval a St rezA robject(arobiid opions) bfe, ie

I'val =FetchProcessStatus(pid, datat)t (d, buffer, size)
sval StoreProc ess(pid, datacbj id, buffer, size)

149

BOOLEAN val TRUE if the primitive was executed properly; otherwise FALSE.

NODE-I0 node-id The node id indicates the actual node which will be stopped.

AID arobj-id The unique arobject id of an arobject instance.

PID pid The process id of the target process.

GKILL-OP kill-options
The options indicate various control options. For example, it can indicate whether
the caller stops every time after killing a single process or not.

FREEZE-OPT options
The options indicate various selectable flags such as a Limeoui freeze/unfreeze
flag.

INT fval The actual number of bytes which were fetched.

INT sval The actual number of bytes which were stored.

DATAOBJ-ID dataobj-id The dataobj-id indicates the private object or system control status of the
target arobject/process.

BUFFER *buffer A pointer to the buffer area for storing the returned data object value.

INT size The size indicates the buffer size in bytes.

A CreateArobject primitive creates a new instance of an arobject at an arbitrary node or a specified

node. Similarly, a CreateProcess primitive creates a new instance of a process in the arobject. The

selection of a node is made automatically by ArchOS unless overridden by the Create operation.

Upon arobject creation, the arobject's INITIAL process is automatically dispatched. An optional set of

parameters can be passed to the INITIAL process when the arobject is instantiated by using an initial

message (i.e., "init-msg").

The KillArobject and KillProcess primitives remove a process and arobject instance respectively. An

arobject may be killed only by one of its own processes (suicide allowed, no murder). In order to kill

another arobject, the target arobject must have an appropriate operation defined within its

specification so it can kill itself, A process can be killed only by a process which exists in the same

arobject instance.

The SeifAid primitive returns the requestor's aroblect id and the P,jrir?,:Aid primitive returns the

150

parenl's rcLlt.:ct id of the spoecli ud il obl-cXt. 1 ho .,,If 101 priuilitivo [Jui i . l pi ucC' ;"., id (pid) o 0 the

requester and the ParentPid primitive returns the parent's pid of the the ;pecifiied proce!;s.

A >,.!-rr !,.,' primitive -'m ts ;an , rr ,r block in i proc,.-s','s ;it h r, ' ':r, i(.e N ti Kor orror hl(,,

consists of a head pointer and a circular queue. The head pointer contains a pointer to an enrtry

which contains the latest error information in the circular queue. Alter the execution of this primitive,

a client can access the detailed error information from the specified error block. A FreezeArotoject

primitive stops the execution of an arobject (i.e., all of its processes), and a FreezeProcess primitives

halts a specific process for inspection. An UnfreezeArobject and UnfreezeProcess primitive resumes

a suspended arob ect and process respectively. While a process is in a frozen state. many of the
(I for nal'airi,; s;h0 tulil !;.i.cisions can be celectiv.,,, iqvoi d. F,:r w-_ :n(c, a tim,inv t

vJue wil be iynui,-d uy s;ccifying a pi uper flay in the Freeze primitive.

A Fetch primitive inspects the status of a running or frozen arobject or process in terms of a set of

frozen values of private data objects. The specific state of the arobject or process will be selected by

a data object id. The state includes not only the status of private variables, but also includes process

control information.

A GlobatKill primitive can destroy an arbitrary arobject or process in the system.

6.3.1.4 Creation and Destruction of Arobject/Process

A client can create a new instance of arobject at any node in the system by issuing the

CreateArobject primitive. The first argument, arobj-name, contains three values: The first value

contains a file name for the image of the shared region and the second value points to a file for the

image of the private region of its INITIAL process. The last section contains a table of entry points for

light-weight processes. Note that the light-weight process is available for kernel arobjects.

For instance, arobject name A may contains {"/usr/test/a.arobj", "/usr/test /pO.proc", nill}.

When a client executes 'CreateArobject(A, msg, Y)", at first the base kernel determines whether the

target node is local or remote. Since this is a remote invocation request, it looks up the A/P

manager's reference name hash-table and determines the destination A/P manager's AID. Then, the

client sets up a request message for the remote A/P manager and issues a proper invocation request.

When the remote Communication manager's Netln worker receives the request packet, it placed in

the target A/P manager's request queue. If one of its workers is already waiting on the incoming

invocation request, the request message will be placed directly into the worker's message buffer.

151

Once the workter %,Xt.cutcci ile CititoArobluct piminve. ll virtl Jd, h11i :.,., : 0 1 L t A v;

created by reading "/Usr/te,;t/a.arohi" and "/L'r/t!;t pO proc" fili.. A niw iroi'- (t d.-crr

also allocated and it3 AID is returned to the worker. Then, the workur r.turia5 Hic if.h tl i.., tO IL.

A/P manager and th: A,'P manjr ii ward the result to the call rs A/F maP rii j,r I I ",,i ut,jii ijii

caller receives the result from the local A/P manager.

The sequence of interaction between two A/P manager is depicted in Figure 6- 10.

_1 t, t

A I

/' I I

12 7

Arc hOS
Kernel A/P Mgr Comm Mgr Comm Mgr A/P Mqr

LO - Worker

8 0

Base I
Kernel L_ L - I- - -

I Arotject desc. A

Reference Name iHashtable :
Pd. Initial

At Node X At Node Y

Figure 6-10: Creation and Destruction of an Arobject and Process

152

6.3.2 Namce rJa, ioiitt

An archicct proc , r urmiyrcr innt.irun bindrinq nforinit.o,,i in ,r 0 !,,1 tlr1(a''lr jr-f

name is bound to a callcr the calltr 3 an~Jjlcct, t lc. i nnyer rejiZ tcr , L; fliii0 lfi t Ther. th

mana1ykr svvoii~tr IIIL.:A kIu;)JJtt ltJ-il JLkh.2, 0li0 ;,.A~KO u.fiig (Alt,' t", .. II I -tl Ji'l (h,i C

using a RequestAll primitive). The lifetime of a binding is the same as the lifetiwir- of an arobject or

process instance.

To find one or all arobjec t/ process instances from its reference name. the arcbject/ process

manager searches its own hash table and if there is no 'entry there, then it Inquires f rom the other

managers.

The toltovwrnD Arch -S T.rmutivor irw 3upported for nameo manjzig-rnc_,nt for aC1i

val = BindA robjecttlame(aid, arobj-refname)
val = BindProcessName(pid, process- refnaine)
val = Unbind P rocessName(pid, process-refnarnp)
val = UnbindArobjectName(aid, arobi-refname)

aid = FindA id(arobj- ref name [, preference])
pid =Find Pid (process- ref name(f, preference])
aid- ;ist = FindA IIA id(arobi- ref name [, preference])
pid list = FindAI Pid (process- refname [, preference])

AID aid The arobject id.

PlO pid The process id.

AID-LIST aid-list The list of corresponding aid's.

PlO-LIST pid-list The list of corresponding pid's.

AROBJ-REFNAME arobi-refname
The reference name of related arobject(s).

PROGESS-REFNAME process-refname
The reference name of related process(es).

PREFERENCE preference
The preference can specify a search domain such as "INTERNAL",
"EXTERNAL", 'LOCAL", "REMOTE", "INT ERNAL-LOCAL", "INTERNAL-
REMOTE", "EXTERNAL- LOCAL', "EXTERNAL- REMOTE"

The BindArobjectName and BndProcessName primitives bind the requested instance of an arobject

153

C'r I.roc -1; !) . r trn e iiiie Tlii Liii,tinq iIllo.i; ill jiutllct (rit W jO 1o I0i.i%-9 ilcit Iiii oile

rrr oii n nl.iint2. or a sint;le refore1(- n. iine cciri boe hotin ifimltiplo trir hIc1 t-)r ;roc .,a i ifi-'tnr--U To

JJ111C2I_ thet CUrij-it biiidiliiy a proce_,... 011.6t use th&-. a1ppl pria1tt ;J~i) riniittiv .

A o:~l primitive returns the unicut id (i e.. aid or pid) of the given arobject or process in -a specific

search domain. A seaich domain can be specilied with respect to all of the intcrnal aroblfects.

external arobjects. a local node. a remote node, or a reasonable combination of amnong four. If more

than one instance uses the same reference name. the unique id of any one of them wvill be returned. A

;_> .? 2rimitive. on th, other hand, r,2turns all of the aid', and pid's which correspord to thc '-iven

refrprnce name

0..3iivut, ULj~cI .. hJti~l

Private ciect manageni, nt allows a client process to allocate and deallocate an instance JI a

private austract data type at any node. An Arobject/ Process manager maintains a !ist of private

object descriptors under its arobject descriptor to keep the data associated with it.

Since an object type can be one of Normal. Permanent, and Atomic, the private object manager

must coordinate with a page set manager (see Section PAGESET) to allocate a proper type of page

set to create a new instantiation of the abstract data type.

If a remote allocation is requested, the creation of a new private abstract data type must be

coordinated between the destination's Arobject/ Process manager and the one with the INITIAL

process. Since every process share all private segments and should have a uniform view of local and

remote instances, the shared header segment must be updated by the Arobject/Process manager at

the INITIAL process's node. When a proper update is done, updated part of the shared header

segment is propagated to the other Arobject/Process manager.

object-ptr = AlIlocateO bjec t(type- name, object-type, parameters. [, node-id])
val = FreeObject(object-ptr)
val = FlushPermanent(object-ptr, size)

OBJECT-PTR object-ptir
A pointer to the allocated private data object.

OBJECT-TYPE object-type
The object-type indicates the name of a private abstract data type.

BOOLEAN val TRUE if the object was released successful; otherwise FALSE.

NODE-ID node-id Node identification. An actual node may be designated, or a node selection

154'

,(rlt .ro i inay i ,t d,. : iidk.. J. li1 (,'Li II1 it IIG (IU. 11111 i' 1,j " thX'x(, t tli,: (ill II

node. any node. or a specific node).

INT size The number ot bytes which must be flushed into permanent storage.

An AliocateOblect primitive allocates an instance of a private abstract data type at any node and a

F'eeCblect primitive deallocates the specified instance. A FlushPermanent primitive blocks the caller

until the -Pecified data object is saved in non-volatile storage.

6.3.4 Recovery Management

The itroUlect _,iecess mlnaJer is responsible for restartinq ritonmc arob!ects Wviich li.ivfW e t t:Ji,

one urivate atomic data object in the event of node failures. Since all private atomic objects are kept

on i corresponding atomic page set, the arobiect/process manager will coordinate with the page set

subsystem to resume the crashed atomic arobiect by recreating its initial process with the pre-crash

image of the private atomic data objects and permanent data objects, if any.

it should be noted that it is still an application designer's responsibility to determine what recovery

action must take place based on its atomic and permanent data objects.

6.4 Communication Subsystem

The communication subsystem provides intra- and inter-node message communication

mechanisms to support a system-wide, location- independent operation invocation for cooperating

arobjects. An invocation request can be initiated by referring to the destination arobject's id and the

operation name from anywhere in the system. Although a single invocation is initiated through the

arobject d. multiple invocation can be initiated by referring to a reference name of arobjects which

offer the same service. In this case, a calling arobject may continue to perform its activity and receive

one or more results by using a GetReply primitive.

The communication subsystem also interacts with the transaction subsystem to coordinate the

necessary transaction management. For instance, a Request primitive is treated as an elementary

transaction consisting of three steps: a sending part of the request, an invocation linking part, and a

r~sceivng part of the request. Then, the linking part links the requestee's Accept. computation, and

Reply. Since all message activities in this transaction are defined as compound transactions and the

invocation linking part is defined as an elementary transaction, it is possible for the requestee's

computation to be a nested elementary or compound transaction of the top-level transaction.

155

6.4.1 Message Header and Body

A message consists of header and body parts. The header part is not writable from a client and only

the body part can be set by 3 client.

The message header contains the following data:

e Transaction id

* Requestor's aroblect id

a Destination aroblect id

e Destination operation name

* Number of arguments

* Size of message in bytes

It shculd be noted that even though message typing is not supported at runtime, type checking of

messages between requestor and requestee can be done solely at compile time. Since message

communication preserves message boundaries, it does not offer a "stream-oriented" communication

interface at this level.

6.4.2 Message Queue

There are two types of message queues associated with arobject and process instances. A

request-queue is allocated for an instance of an arobject. When a new aroblect instance is created,

the arobiect/process manager creates a request-queue associated with its arobject descriptor. That

is, the body of the message queue is kept in the kernel at the running node of the initial process. A

reply-queue is allocated for an instance of a process. When a process issues an invocation request to

an arobiect. its results will be placed in the reply-queue.

In both message queues, each entry is represented by a message descriptor and can be checked

without accepting the message itself.

6.4.3 Communication Manager

When an aroblect invocation request is issued at a caller's site, the communication manager sets up

a proper header part for the message packet. The message then is sent to the dfe_ Anation rIrobject. If

the destination arobject is in a remote node, the remote invocation protocol is used and the

communication manager becomes the monitor for the protocol. Similarly, when a process accesses a

156

Alar2(1 plivate 'fat'i at a ronilte rlode, a reinote procedure (,all is u:wl iii on the comintinwr. itionf

ilfldnjer &.xecijte, its protocol

6 4.3. 1 Componentls of the Communicatin Manager

Each Cornmsnication Managjer works with a pair of network 1/0) workers called, "Netlrm' and

"NetOut' arnd a group of "Stub" workers.

N'etIn and Netr ut workerS, are resposible to receive and transrmit I lneSS,3iqe' packet betwe'en two

fli-Iodp A 'duhjt woirker 15 115011 to pierformi a reinnite iivocitioii request for i 11.i r- d priva ted .I dt;i

olbi-w-t 'Nh'ln i i-mioto invocation ri; received hy the (Jonilliiiitioii Manlqi r. it as5w'iin thin 1(J mtualm

wofk' to the- stilt) worker flieri, the0 stub worker calls the target proceduire w/ith tho arqjurimcrits, and

rotirs fth 'P rtsu t packet to the caller A seq1uerice of remnote invocation v, df--scrihfed i :; w lion

6.4 3 2 A rchOS primitives

IThp following ArchOS primitivos aire supported for comivniuncntior mna(Jlenfti for a (,Iieit

trans-id =Request (arobi -id, opr. rnsg. reply-msy)
trans id = RequpstSingle(arobi-id. opr, msq)
trans-id =Request A ll1(arobiect- name, opr. mrg)
p1(1 = GetReply(trans-id. reply-msg)

(trans id. requestor. opr) =AcceptAriy(acc-opr, msg)
(trans-id, opr) =Accept(rerquestor, acc-opr, msg)
trans id Rephy(pid. req trans id, reply-mnsg)

ptr mds, Ch-clkMessaqPO(qtype. selector, selector id)

val =CaptureCommArobject(arohj Id. COfmmrtype, reqijestor, req opr)
val = CaptureCommProces(pid, req opr)
val - Watch~ommA robject(arot)-id, corntypo, roirjijflsor, reij (pr)
val - WatchCommProcos%(pid. reqI opr)

ITlAN5AC r)N in trainn-id
I he transaction id of tho Irn ilrmatio n on whimsm' bhalnf the m 'fitiec;h is biing InaIdo.

AID arobl id Thom iiniquiP idS of the receivingq atr obect.

()F'F F-)VIVC T OfI opr
Iho nampn of thrsi ime aionit o ho pri, formn .

MF'AF -,() *rnr,(j A pointer ht) file rn1iq whiv il iirifiirin. tin' Imar arne1n'if Ifl'i i''i o lii iiol to b"

po-rforrTFl4ml Thn ito5iI4(thu' i h .1iriuirll mum iiiif .1 111 lilt ;l i f i iiih iiu ly

Ipomfritnr (i P .i;ihl b y vailumr riiirh iv~ oiin hio i 15541)

157

REPLY MSG *reply-nisg
A pointer to the reply message.

AROBJ-REFNAME arobl-refname
The reference name of the receiving arobiect(s).

OPE-SELECTOR acc-opr. req-opr
The name of operation to be performed. The "opr" parameter can be a specific
operation name or "ANYOPR".

TRAiHiSACT'N-ID req-trans-id
The transaction id of the transaction on whose behalf the reques t is made.

MSG-DESCRIPFORS *prt-mds
Pointer to a list of the message descriptors selected by the specified selection
criteria.

MSG-Q qtype. commtype
This indicates either "request-" or "reply-" message queue.

BOOLEAN val TRUE if the primitive was executed properly; otherwise FALSE.

AID requestor The aid of the communicating arobject.

The Request primitive provides remote procedure call semantics in which the requesting process

invokes an operation by sending a message and blocks until the receiving arobject returns a reply

message. Identically, if the receiver arobject is the same arobject, a local operation will be invoked.

_he ReauestSingle and RequestAll primitives can send a request message and proceed without

waiting for a reply message. The RequestSingle primitive provides nonblocking one-to-one

communication and, the RequestAll primitive supports one-to-many communication. The requesting

process may thus invoke an operation on more than one instance of an arobject or process with one

request. To receive all of the replies, the GetReply primitive may be repeated until a reply with a null

body is received.

The GetReply primitive receives a reply message which has the specific transaction id generated by

the preceding RequestAll primitive. If the specific reply message is not available, then the caller will

be blocked until the message becomes available.

The process responsible for an arobject operation receives a message using the Accept primitive.

Using the selection criteria specified, the operating system selects an eligible message from the

158

arobjects input q.LleLli M Id rtir ns it. I1 pr)oCt,::; ()p, tvils . ti I i t! , 1 j. l,)(i1i(!1 1j ,,,itl I.. fijl

when processing has hien completed. It nn sitia.o im -s. c r in the rcqiiet ' I e qtiLith11 th;n

the calli. will block until such a icu., u buconi.s ,Jvillblu.

The AccewtAny primitive can receive a message from any arobject instance with any operation (i.e..

"ANYOPR") or a specified operation request. The primitive can return the requestors transaction id,

specified operator. and requestor's aid. The Accr,-t primitive can receive a message from a specific

requestor arobject and returns the requestor's transaction id and the requested operator.

The CheckMessageQ primitive examines the c: n;nl status of an incornmij MK:,: j,_- cu 'at'. '.1t',,ut

hlockinq thr c i sr prn (e s The primitive mutst 'ipecify a nc-,:._f, th ;,-'ii th 1, r :t

queue r reply-qi,, ii- Fiier,?r 1it. l' i1*" ' " 11 :i l l h nu 'r"t.(l r 'i?"

is al!occatod for e-ic, arobtect instance. The reply (;Li.1- ML;i ntains all of the non rc.d r p[, r3.,. • 3

and is assigned to every process instance. A message can be selected based on the sen(:-r s

arobject id, operation name. and/or transaction id. If more than one argument is given, only

messages which satisfy all of the conditions will be returned. If no corresponding message exists in a

specified message queue, a "NULL-POINTER" w;ll be returned.

6.4.4 Remote Invocation Protocol

A remote invocation protocol is used to control the invocation of an operation on a remote arobject.

In a simple remote invocation case, two packets will be exchanged between two nodes: one is a

request packet and the other is reply packet. A simplified version of protocol sequence is shown in

Figure 6-11.

When a remote request primitive is issued by a client, the base kernel pass its request to the

communication manager. Then, the communication manager places a request into an outgoing

packet queue and gives it to a "NetOut" worker. The NetOut worker simply initiates the actual output

activity over the net. Note that the NetOut worker can be replaced by a simple procedure call within

the communicaiton manager if the context switching is significantly large.

When a remote site receives the request packet, the "Netln" worker of the communication manager

places the packet in its incoming packet queue and notify it to the communication manager. If the

destination arobject is ready to accept the request, the communication manager moves the actual

message to the destination arobject's receiving buffer. Otherwise, the communication manager

places the message in the destination arobject's request queue.

159

"I P

-? ,I

Yr

I ,-

4f /" I

At Node X At Node Y

Figure 6-11: Remote Invocation Protocol

6.4.5 RPC for Shared Private Objects

When a client invoke an operation on a shared private object exists on a remote node, the

communication manager's stub worker performs the actual invocation and returns the result to the

caller.

At first, the private object invocation request to a is checked by looking at the shared object table in

the shared header segment. If the target object is in a remote node, a remote invocation request,

InvokePrivate will be sent from the communication manager.

When the remote "NetIn" worker receives the packet, it checks availabiility of the stub workers. If

one of stub workers is idle, it assigns the actual invocation request to the stub worker. When the stub

worker completes the invocation request, it returns the result message to the communication

manager. Then, the communication manager forwards the result packet to the caller.

I nt

I

AL Nude A I At. Nude Y

Figure 6-1 2: Interaction Sequence for a Remote Invocation Request

The basic sequence within in a remote communication manager is shown in Figure 6-13.

Pdet Out N et In IAr'object B1 5

Client A I Comm mgr

Net In met Out ,

1 21 0 . B P r v a t e
0 Object 8 l

I 8

Stub Worker I

At Node X I At Node Y

Figure 6-13: Remote Procedure Call Sequence at a Remote Communication Manager

161

6.5 TransaiG.i ,Subsy t,--in

Tho trzinsa cht n ':','1 " rn mlin., ;, t.,.,o o of tr, iw-ictionfl' (rnnoif ' id tr lionn rd

elementary transactions The transaction subsystem allows a client to nest a compound transaction

or an t-lernentar trriLaction in any combinaltion. By using the riestcd -Lctc.iltory tra isactiun:;. 3

client can use a traditional "nested transactions" mechanism [Moss 81]. A compound transaction

can be used on a "compensatable" atomic aroblect. [Sha 85, Tokuda 851 Thus, the transaction

subsystem must provide the uniform control mechinisms to perform a "commit" operation for both

types 3ad Jn "undo' operation for the elementary transactions and a "conpe?,ision" operation for

,he _crnoound transactions.

A:,1 {] a, hi t : I l.;t I l ' (tirrait 1r il'h:, tt fl 2;iJ;'n;, l!l attn ,12 it a ' " !' f 't .c llrt -'li:a ',tnch

support a ',-coperating" transaction.

6.5.1 Transaction Types, Scopes, and Tree

* Transaction Types:

A transaction type indicates whether the current transaction is the elementar, or

compound transaction and the top-level or not.

e Transaction Scope:
A transaction scope is created when a new transaction construct is used in a process.

Within this scope, a client can access atomic objects as if these computational steps

were executed alone.

* Transaction Tree:
A transaction tree is a structure that can be used to trace the dynamic behavior of a set of

transactions. The transaction tree also provides information related to the commit

protocol and tcck propagation among the nested transactions.

* Transaction Id:
The transaction subsystem gets a unique transaction id from the base kernel when a new

transaction is initiated and guaranteed to be unique over the lifetime of the transaction. A

transaction id is a fixed-length descrrptor consisting of a sequence of parent's node id,

current node id, and local unique id.

6.5.2 Transaction Management

The transaction manager is responsible for maintaining the consistency of the atomic aroblects

even in the case of a node failure. The malor activity of the transaction manager is the

"BeginTransaction", "Commit" and "Abort" transaction processing.

To commit a transaction, the transaction manager coordinates with the related page set subsystem

162

.. id performs atomiic tI A te k i 01 All 1toIri)C ij,.3 lll~ti i~c i II Idt L, li , itiIll

coordination is performcd bane I on the 31pi:;~o commifit protocol I B ri,;toin 331 to imfprov (Cis

reliability,

To abort a transacticn. the transaction manager must also coordinate with the paget? SuSbsystem.

but it performs "undo" for elemen~ary transactions and initiates the necessary "coinwtcnsation

operations" for all prc-committed compound transactions.

6.5.2.1 Components of the Transaction Manager

Each Tra2nsaction Ma1.nager works with a group of workers, calle--d "Coordinitor' andj

"Subordinator" A 'Coordinator' is assigned to keep track the activity of a lop Lv, , tww-sjctioii.

l'nnte tup-~Vt P r~ n i,; committed, thie "Coordwinwru vwoiiker isrpoxiil to ifan

3-phase commit protocol among the related subtransactions. A 'Suordinator' is use d to k,-Jwp track

the activity of a nested transaction.

When a new transaction is created. a transaction descriptor is created in the Transaction Manaqtr

and is used to maintain the current status of the transaction and relationship to its child transactions.

6.5.2.2 A rchOS primitives

The following ArchOS primitives are supported for transaction management for a client.

tid = BeginTransaction(trantype, Itimeout)
sval = CommitT ransact ion (tid)
sval = AbortTransaction(tid)
sval = AbortlncompleteTransaction(req-tid)

tid =SelfTid()
ptid = ParentTid(tid)

* trantype = TransactionType(tid)
val = IsCommitted(tid)
val = IsAborted(tid)

TtME timeout The Itimeout value indicates the maximum lifetime of this elementary transaction.

TRANTYPE trantype
'The type of the given transaction, such as "CT", "ET". "Nested CT", or "Nested
ET".

TOD tid The id of the specific transaction.

TOD ptid The parent's tid of the given transaction " tid.

INT sval returns 1 if the requested action was performed on the specified transaction
___ successfully, otherwise returns error staus code.

163

I; "CULEAN astl -, t hL iIlih r tz ut., ;ka pr,.jhc:LtO. is hol.: ollicrwi:. rt.lnr.c I Pi:1.

Th '.:.' :'.. [crllivo C-, hi 3i .: l train;-Ctiol descriptor for th! i, (:th~t,;rl tin.a,.hoi. I1I-

ComwmoTransacton primitive commits the specified transaction.

The AbortTransactlor primitive aborts the specified transaction and all of its child transactions

within the same transaction tree. If the transaction that invokes the Abort Transaction primitive does

not belong to same !he transaction tree as the transaction which is to ho aborted, a client cannot

abort that trariisaction Thiis primitive executes all of the necessary "undo" or "compfunsate" actions.

h:,sc~d cri the trn"-ction t','pe. and bin !",s the current triansaction scope. Alt,_-f (oin, :-Ain ' i -

actrorIs, tl!; t. itus of ill ifftctud atoric ob;,,.cts will be onsiOtent ad d rotLIr IC to _1lh,_r "i, (c l"

to or "a member of the equivalence class" of their initial (pre-execution) tates. The

.t ort/nlc2-moDite/rdrnsaction primitive also aborts all of the outstanding incomplete transactions

.vich had been initiated by an outstanding RequestSingle or RequestAll primitive. In other words, all

of the nested transactions which belong to the specified request transaction but have not yet

completed (committed) will be aborted.

The SeifTid primitive returns the id of the current transaction and the ParentTid primitive returns the

parent transaction id of the given transaction id. The Transaction Type primitive returns the type of

the given transaction (a compound or elementary) and also indicates the transaction level. A

'sCommitted primitive checks whether the given transaction is already committed or not. A IsAborted

primitive checks whether the given transaction is already aborted or not.

6.5.3 Three-Phase Commit Protocol

When a top-level transaction is created, its node's transaction manager becomes a primary

coordinator to perform the 3-phase commit protocol and the other transaction managers where at

least one nested transaction was executed become subordinators. These subordinator transaction

managers are also used for backup of the primary manager.

The current 3-phase commit protocol [Bernstein 831 can be summarized as follows:

1. The transaction manager, say TM., which is responsible to a top-level transaction, Top ,

invokes "prepare" operations at all visited node's transaction managers by using a
RequestAll primitive. Then, it waits for all transaction managers to acknowledge the
"prepare" operation.

2. TM invokes "precommit" operations on all the other transaction managers which involve

164

T, W !..n tht- other tr, m --. i,h n mll, al.qels InItI h l the "lpr,..,co)mmit" 11,1r1- ,l ILy .0dh

a iw.w -:11try, It, , to its Cupy ut "COi}IIiit list" of Fto p I lIi, tli.;y .,-,it fur ill
a:c!nowh&'dqerntnt:; for "rrecomnmit" to come hack

3. TY perform "comnit" operation,; kt all relitcd trlwiai:tin in i.;

6.5.4 Compensation Action Management

A transaction manager must initiate a compensation action whenever a compound trarl.sachort is

aborted and must guarantee that the effects of all committed actions are cancelled out. In general.

the crderng relation aniong the compensation operations is sensitive to sat:it, local . ind ;!,';1l

"equivaience relations". thus the transaction manaor must mamntain a c!e-r ori--rmn-j rule In 1hti

current alygo:Iin. ,ve t; ,. the revcm r! onciiny of tlh;: "coimitteod" ti i f r), , I,

The boc,, keepm'i is performed by using a "compensation log" at each aroblect Wh,n an .rci,j ::,t

invokes a compensatable operation on another aroblect as a nested transacon, a 'comrens 4'tin

log" record which consists of the current transaction id (i.e., callers transaction id). arobject name.

operation name. parameters, the compensation operation's name, necessary parameters for the

compensation operation, will be added on the caller's log. When the callers transction is aborted.

the system first checks the "cancellation relation" between the current operation and the previous

operations by getting the information from the arobiect and then the system can simply determine the

necessary compensation operations by looking at the compensation log record from the end to the

beginning and invoke them.

6.5.5 Lock Management

Proper lock management is necessary to provide a consistent view of atomic data oblect across the

transaction tree.

When a nested elementary transaction commits, all of the locks that it held are passed to the

transaction in which it is nested (its parent in the transaction tree); when a nested compound

transaction commits, all of its locks are released. The rules that determine which locks a transaction

may obtain are more involved. Two transactions are said to be unrelated if: (1) they are not contained

in a single transaction tree, or (2) they are in a single transaction tree and are concurrently executing

siblings or descendants of concurrently executing siblings, or (3) they are in a single transaction tree

in which one is an ancestor of the other and either the descendant is a compound transaction or

there is a compound transaction on the path connecting the two transaction nodes in the

corresponding transaction tree. (Note that according to this definition, a compound child transaction

is always unrelated to its parent transaction.)

165

TWO unrckatt I trzin:;icou01iis nii (Wijwtc for locr. and(llhiy n1ay flid lock:; v.itl coinpalii t-t lock

modes for a ,,inylo? data~ object at any given timne. Howvever. it they request incompatible lock inntles

for a 6winyo data objet. then one of tlw ! coniputiiS will obtain a lock Lind the othier will block Lintil it

can retct~v,_ Ji- ul, : cik. or it Nill r cluirn to t. rt-qut., tor with an .lppropr at- -tatus indication.

Two transactions are said to be related it they are contained in a single transaction tree where one

is the descendant of the other, the descendant is an elementary transaction. and there Lire no

compound transactions in the path connecting their respective nodes in the transaction tree. The

lcc compaltbility rules for related transactions are different than those for Linrelated transactions. In

this case, the lescen-iant transaction can obtain iny lock mode for Orny ioc,; heldJ 'y al rzelited

anrce-tcr in hc :r i nsw tiori trpee. IricloIinri in, crni:,atible lock modes thait would not be Jlo,.- :1 if lhe

tra:16aac:1G3.or.s -,c aiir,_iLtr. IC1 couurse .thu dlscendaiint trarcactii vvill have to cuiiptt vtLiall _1

the' unreiated 'ran,,actions in the sytem to successfully obtain the requested lock tjiih tho dtsired

mode.)

The following ArchOS primitives are supported for lock management for a client:

newlocK-id =CreateLock([parent-lockidj)
val D eleteLock(lockid)

sval S SetLock (lock- type, lockid, lock-mode)
tval =Test andSetLock(lock- type, lockid, lock-mode)
tval =TestLoc k(lock- type, lockid, lock-mode)
rval =Re leaseLoc k(lock- type, lockid, lock-mode)

NT sval 1 if the specified lock is set; 0 if the lock is not set. A negative value will be
returned if an error occured.

NT tval 1 if the specified lock is being held: 0 if the lock is not being held. A negative
value will be returned if an error occured.

INT rval 1 if the specified lock is released; 0 if the lock is not released. A negative value
will be returned if an error occured-

LOCK-TYPE lock-type
The lock type can be either "TREE" or "DISCRETE".

LOCK-1D lockid The lockid indicates the unique id of a lock.

LOCK-MODE lock-mode
The lock mode can be "READ", 'WRITE", etc.

166

0it , 'riiitlve .1:; 1t " ;1, ' or "discl',ti-typ,?" lock on it litimy I+ tA I y :, pe(tlc it j a

IOCK key .1d)(I its mot, If a roqi' ,stoi I lock ii being he-i1. the caller will block until it is r+ ,cia-d, The

;,", 1 ,, tiv e jLo lriuc; to zct.f .i lock, however, it will return a "FAL'SE" it the lock js builig

ieldi. It t,. .I +, I Ik!,. , 1, a Ii tc lutk t'p , tli" the . _ciL ;(,A and estaoSt el uc A p i;tives niay al'o

fail due to the violation of the tree-lock convention (See Section 4.2.4.2).

The TestLjci primitive checks the availability of a specified lock with a lock mode. In the case of a

tree lock. it also checks whether the locking would be legal in the corresponding lock tree. The

m3seL_ :: -)riinitive can release the lock on an object which was gained by the SetLeck or

) Or,',c C 'i primitive explicitly.

6.5.6 R, c.u,,ury ivlanjyunient

Since automatic recovery of application programs is not an easy task for the transaction subsyct+:ii

the subsystem guarantees only the consistency of atomic aroblects and provides a h;indle to

distinguish the pre-crash and post-crash situation. Each aroblect designer must define a proper

action for recovery and let the "INITIAL" process han lle a detailed recover sequence.

In ArchOS. each aroblect has an atomic variable, called the "restart counter" which becomes

incremented Nhenever its host machine restarts. By using the restart counter, the INITIAL process

can examine whether the program is running before a crash or not.

To clean up and retrieve the necessary atomic aroblects, the transaction subsystem must

coordinate with the page set manager. In particular, the atomic page set manager can recover the

nessary page set for a given atomic arobject.

6.6 File Management Subsystem

The ArchOS File Management Subsystem provides , system-wide, location independent file access

service. It provides three types of files: normal, permanent, and atomic. Normal files are temporary,

and not recoverable following a crash. Permanent files are saved on disk, and most closely resemble

files on other systems. Atomic files are guaranteed to be failure atomic under "soft and clean"

failures [Bernstein 831. All three types of files are cOi ,nt level arobtects when actve h e open) When

'r'active, permanent and atomic files are saved using page -sets (See Section 6 7)

The implementation of files as regular client level aroblects achieves two main advantages. First,

the full power of the ArchOS transaction facilities is available, permitting the arbitrari nesting of

167

atcmic file ci tS itio, L S ,ithin ulther tit: -t,d tia-hd.(Aions. set3oC i llt li : . ir, L, I I',t; trk.Il, II n ,f'

same mannor is othv-r .rohloCtS by the Tirne (rivon Sclih iohr i ilhe Tin, 1rr.,f.n Vithil Mlenm ry

Manager Thli-, u ,.:u talut criticil tilt3 i dadli) will 0 .volub L J ,d1iti .-id 111) W.l:li I

af= C0 L A. :.. ,;, toLii.ci prO(:- :., llL . hI ii'J lit ; ili 21" ,11, lHr !'11

The File Subsystem uses logical, location independent names for files. Hence, files are rot

constrained to reside on particular disk volumes. They can be dynamically moved to other disks by

the s'1stem if desired fcr improved global disk usage. The file name s;pace is flat (not hierarchicAl),

t)ut fac.i.ties .re Orovrlo, & to allow many of the, benfits of tiwrarchical direc: riei. File nanl,-m :art

expected *o ce reI':i tly long strings composed of several shorter strnnqs ,-:,. :,)

sep rsit .i ', , , .-hiractr i ila sh) An rnital Su1.b tring (fl nImt-; (w 'r- i ,;;i, , "

Node I Node 2

P-efix Map Manager I Prefix Map Manager 2

Preqix Map Table: Prefix Map Table:
I . - r ,ts:,ry 4anager I I 3 ic3l fisk I Diroc.'rj minA er I

;;eI ly ;1e 4'r ,1nijer i n Iq :a I ', Sk [)', :
. ir ; -.S 3,) ec'ory A ola ,jer 2 etc t-gi cai 3Isk 2 Dire -ry Minijger

tsr "t - a ,') sk 2, 3tr IcT.ry Manayer 3 usr/tmp i ogical Disk 3. 3re'.:y Wanager 3

Directory Directory Directory Directory

Manager Manager Manager Manager

1 2 3 4

Logical Disk 1 Logical Disk-2 Logical Disk 3 Logical Disk 4

Directory Directory Directory Directory
Prefixes: Prefixes: Prefixes: Prefixes:

/etc usr /rc usr 'sys

I /usr sr/m .r bI 1 n Ijr /b b n ,sr jhn

Figure 6-14: The Partitioned File Subsystem Directory Structure

T'me sistem-wide file system directory is partitioned. where each partition is saved in a known

location Irefer Figure 6-14). For example, the part of the directory containing all file names with a

particular prefix is saved at one logical disk. This style of implementation vas dic3ted by efficiency

168

considtr,idioiis, .;uchi ..v.i in ci ,dtinq ind lO(itIin tiles. Facilities rt - pro'. I ,a no ui ,lr t U of the

directory from one di!,k to another, but this is ?<pt-t tod to occur irtipttJ-'ntly

T F I te nt ArbjL'.t

i fI i o ' r u e ln t.er flce I

Ar, L Ar It j t.

5nk! per
Prefix i

4
3p Manager node

one per Jisk
Directory Directory Direciory

with directory
Manager Manager Manager

on it

Figure 6-1 5: Subsystems within the File Management Subsystem

The functionality of the File Management Subsystem is provided by four separate but co-operating

entities (refe; Figure 6-15).

1. Each client arobject is linked with a standard file system interface. This interface consists
of a library of routines, which hide the implementation details of the other subsystems
Nithin ,he File Management Subsystem.

2. Eacn open (active) file is represented by an instance of a user level file type arobject.

3. Each node in the system contains a kernel level Prefix Map Management Aroblect. which
is responsible for mapping file name prefixes to the logical disks on which their directory
entries reside.

4 Eacii logicaj disk in the system containing a portion of the directory has an associated

kernel level Directory Management Arobject.

The above four entities will be described in some detail in the following sections.

169

6.6. 1 cliclit Aroi,t.:ct's i Ilo Sysit, 11 Iiitorflace

A Ci trohj-tct ,vill alv.azys interact with the file system through thle uISe of a Lird lz rd -o1 of lihirary

routines. These routines ai e together rf-erred to .as the Client Aroblect's File System ltitti lacue (or the

CA lnLtaf-co). The p i ~~rpo!e 01 the CA hiterface is to transparently in Ic: aci it II i tin JO

other subsystems of the file system (File Arobjects. Prefix Map Manager, and Directory Manager) in

supporting client level functionality. Thus. it hides the details of the interactions with the other parts

of the File Subsystem. and provides a cleaner interface than the raw system primitives.

A s-econd aspect of the CA Interface's ftinct~onality is that it provides appropriate internal bulffe ring

to improve efficienrcy For open tiles, it al,;o keeps track of the SIZes of the files.

The follovwing list of primitives is intended to ilustrato the functionality of the ArchOS ';tan(!,ird file

/0 library it is not an exhaustive list. Many other primitives ran be added to make file mianagement

more convenienit for the client.

fid = C reateFile(filename, filetype. mode [, node])
val = DeleteFile(filename)
tid Open File(filename, mode)
vat CloseFile(fid)
jai RenameFile(oldname, newname)
val SyncDirectory(filename)

val SetPref ix(prefix)
prefix = GetPrefixo

nread = ReadFile(fid, buffer, length)
nwritten = WriteFile(fid, buffer, length)
nwritten =ZeroFile(fid, length)
val = Seek File(fid, byteoffset, origin)
vat = SyncFile(fid)

val - StatusFile(fid, statusbuffer)
vall = lntaFile(filename, infobuffer)

INT fid The 10 for the file.

BOOLEAN val TRUE if the specified operation is done successfully: otherwise FALSE.

FILENAME prefix The filename prefix currently in use, which will be added to any filename tails
being specified.

INT nread The number of bytes actually read.

170

INT ilwritten Ille numbtr of hf't,t. ,itlilly writtn.

Fit ENAIf.IF filename
The name of the file for which the specified operation is to be performed.

FILET'i PE filetype The type of the file to be created: NORMAL, PERIANEN r, or ATOMIC.

MODE mode One of four possible modes in which the file can be opened: READ, WRITE.
READ-ONLY, and EXCLUSIVE-WRITE.

NODENAME node The ID of the preferred node on which the file should be created.

FILENAME odname, newname
The old and new names (respectively) of the file being renamed

BUFFER 'buffer The address for the data buffer.

INT length The number of bytes to be read or written.

INT byteoffset The position in number of bytes from the origin.

FILEORIGIN origin Starting position in the file, which can have one of three values: START-OF-FILE.
END-OF-FILE, and CURRENT-POSITION.

FSTATUSBUFFER "statusbuffer
The buffer address for returning dynamic file status information.

FINFOBUFFER "infobuffer
The buffer address for returning static file information.

The CreateFi/e primitive creates a file of the specified type (NORMAL, PERMANENT, or ATOMIC) on

the preferred computing node. If a node preference is not specified, the file is created on any node.

The newly created file is then opened in the specified mode. The DeleteFile primitive deletes the

specified file OpenFile opens the specified file in one of four modes: READ, WRITE. READ-ONLY,

and EXCLUSIVE WRITE. The CloseFile primitive closes the specified file. 29 RenameFle changes the

name of the file from the old name to the new name specified. The SyncDirectory primitive is used for

saving any buffered directory information for the specified file on disk.

The SetPrefix primitive provides a short hand technique for giving filenames. A file Prefix can be

29 AIl Olel files for a client are registered with the kernel by the CA Interface Hence. if an arobiect with open files is

cesroyed te kernel can ciose all these open files The occurrence of each of the three primitives CreateFie, OpeenFile, and
C,'oseFtie, ;s reported to the kernel.

171

spk.I It,::J. A/w hl('hl Ii 11111ll oticl ,(illy C(m)11 tel.[t.1. [.'d w ith J11le11nt1u m.? tall";. to. fo(Ili 1I1 l- (.i'lil i. : !i- ~ Ih1x ih I l

Go tPreiit primiliv illow!; the client to obtain the cnrrcnt value of the fil(e prefix

The Re- dF;le primitive is usCd for rcading the specifid 1 n uml)er of I)ytO; from 'I file. st ihn(:it the

current posit:on. The bytes read are returned in a buffer in the client's address space. Similarly. the

WriteFdie primitive writes the specified number of bytes from the buffer, at the current position in the

file. The ZeroFile primitive is used for writing the specified number of zero bytes, starting at the

current position in the file. The ability to zero a file is useful when truncating files, and creating sparse

files. The SeekFile primitive allows random access to a particular position in the file. The position can

be specified as a byte offset from the start or end of the file. or from the current positon in the iile.

The S~incFiie primitive flushes the contents of a file from buffers in memory onto disk

The StatusFile primitive is used for obtaining dynamic status information of a file in the buffer

provided. Information such as the current mcde of file access, and the number of active and

outstanding open requests on the file is provided. The InfoFile primitive, on the other hand, provides

static file information, such as creation date, last modification date. length of file, etc.

6.6.2 File Arobjects

Each open file in the system is represented by a client level file arobject. There are three different

types of file arobjects, corresponding to the three different types of files: normal, permanent, and

atomic. A file arobject maintains the "file buffer", and provides byte level file I/0. The file is mapped

onto the virtual address space of the file arobject, and the buffer is maintained automatically by the

Virtual Memory Subsystem. The two main functions of a file arobject are: (1) maintaining locks, and

thus ensuring consistent concurrent access to the file, and (2) handling read and write operations on

the file. Locks are set on the entire file. When the file is opened, the type of access is specified, and

the appropriate lock is set. The lock is released only when the file is closed. In addition to lock

management, reading and writing, a few other primitives such as FASync and FAStatus are also

provided.

172

filo;size = FA Ol&,n(mode)
val FAClose()

nbr = FARead(location, nbytes. buffer)
nbw = FAWrite(location, nbytes, buffer)
nbw = FAZero(location, nbytes)

val = FASync0
val = FAStatus(statusbuffer)

val = FARestart(fdm-aid, filesize)

INT filesize The size of the file in bytes.

BOOLEAN val TRUE if the specified operation is done successfully: otherwise FALSE.

INT nbr The actual number of bytes read.

INT nbw The actual number of bytes written.

MODE mode One of four possible modes in which the file can be opened: READ, WRITE,
READ-ONLY, and EXCLUSIVE-WRITE.

INT location The location (in bytes from the beginning of the file) within the file at which
reading or writing starts.

INT nbytes The number of bytes to be read or written.

BUFFER *buffer The address for the data buffer.

FASTATUSBUFFER "statusbuffer
The buffer address for returning status information.

AID fdm-aid The ID of the Directory Management arobject, to be used when closing the file.

The FAOpen primitive allows a file to be opened in one of four possible modes: "READ", "WRITE",

"READ-ONLY", and "EXCLUSIVE-WRITE". These modes apply to all three types of files, but the

behavior of a mode does depend on the type of file. Once the file is opened in a particular mode, the

appropriate type of lock is set on it to ensure consistency. The size of the file is returned to the client

arobject. The file size, as well as the current position pointer are maintained by the Client Arobject

Interface. The FACIose primitive closes the file. It also deactivates the file arobject if there are no

other outstanding "opens" on the file.

173

The A 1i1 a ad d a opo'lal.l)'; 110W I 1 ow itlI) l (,/ytc; to l e reml or imrll,- i . 1110 lw . iiilil

position at which reading or writing ;ioulCld "tlart. and the nijmher of byites to be ria(J or .vrittc>n Lre

provided, along with a pointer to the data buffer U. [he actual number of bytes read or written is

returne ! by the operation. Ihe FI',.ro primitive allows a number of bytes irmtidt of the, lilu to be

zeroed out. Thus. it is possible to truncate a file, or maintain a sparse file in this system.

The F4Snc operation flushes the cortents of the file buffer onto the disk, so that any buffered

information is synchronized with the copy or the file stored on disK. The FAStatus primitive returns

dynamic file information in the statusbuffer provided. Information is provided about the mode of ile

access, the lock compatibility of open files, and the number of active and outstanding open requests.

The :2Pestart operation is used for initialization purposes when the file arobiect is first creat-d

(which can happen when the file is created, or first opened). It is invoked by an instance of the

Directory Management arobject, which provides its own ID and the current size of the file as

parameters. The ID of the Directory Management arobject is used by the file arobject when the file is

closed by any client.

6.6.2.1 Components of a File Arobject

The components of a File Arobject are described below and shown in Figure 6-16. Each file

arobject has a single process called the FA Manager Process, which receives all requests for

operations, carries out the appropriate operations, and returns the results. It operates on three main

data structures: (1) the Open Client List (OCL), (2) the Request Client List (RCL), and (3) the file

buffer. The Open Client List maintains a list of the clients which have successfully opened this file,

and the mode of access for each client. Since locking is done on a per file basis, all these clients

must have compatible locking on the file. The Request Client List is a list of the clients waiting for

their open operations to be completed. The information maintained for each request is a triple

consisting of the request transaction ID, the ID of the requesting client arobject, and the mode of

access requested.

The file buffer is a part of the file arobject's address space. It is maintained in a number of fairly
large chunks (32 KBytes per chunk31). A list of pointers to ttlese chunks and a count of the number of

cnunks are also maintained. The advantage of large chunks is that a long list of chunk pointers is not

needed, and hence searching for a particular page in the file can be more efficient.

301f the client is remote with respect to the file arobject, the communication mechanism automatically handles data transfer
to the remote buffer.

31The size of the chunks is determined by the architecture of the SUN workstations, the current target machines for ArchOS

implementation.

174

i i t , I l ,

~~vA~v "hun / 7. s'.,

1 2 3 4

Figure 6-16: Components of a File Arobiect

In addition to the three main data structures, a few other pieces of information are also maintained.

Some of these are the ID for the Directory Management arobject, a flag which indicates whether the

file has been modified, and a variable which saves the current size of the file3 2 .

6.6.2.2 Normal and Permanent File Manipulations

Opening of files is allowed to proceed on a FCFS basis 3 , but multiple compatible opens are

permitted. When a FAOpen request is received by the FA Manager process, the Open Client List is

first checked to see whether there are other ongoing requests. If the OCL is empty, the incoming

request is placed on that list. If the Request Client List has some waiting clients, then the new request

3 2 The size of the file saved here is updated whenever FAWrite and FAZero operations are invoked. This is not the most
up-to-date value, since the Client Arobject Interface buffers several read and write operations.

33The policy for opening files can possibly be set by the user to better suit the constraints of the real time application.

175

is addcJ to that list. If the ICIL is eipty alnd the mode, of tlh, iilci)i inj r, is : [iiu tl) JI e i, ,'li h

modes of the ongoin(. reque:;st:; in the ()CL. the new request Is ;dlle, I to the ()CL. bULt if the rno(1de i3

incompatible. then it i s added to the 1)(L. Once the incoming request has bfeen ad(ljd to the CCL.

the Fa., is cofnplet,?. and the client is signalled. If the incoming request is added to th-: RACL. the

FAOpen is suspended, pending lock availability.

When the FACIose operation is requested, the OCL is first checked for the requesting client, and the

corresponding entry is removed. Next, the FDCIose0 operation is invoked for the appropriate

Directory Management (FDM) arobtect. The FDM arobject maintains a count of outstanding open

requests. 2.nd inforrns the File Aroblect whether it should continue. deactivate, or kill itself. If the FA

has to continue, it moves all of the compatible entries from the head of the RCL to the OCL, and

notifies the corresponding cients. If there are no outstanding open requests. the FA deactivates

itself. if the fie has been deleted, and the last rAC,ose operation has completed, the FA kills itself.

The reading and writing cf normal and permanent files is very straightforward. The system "copy"

mechanism carries out the transfer of data between the FA address space and the client's address

space. Reading and writing to disk is automatically handled by the virtual memory manager. Each

time the FA Write and FAZero operations are invoked, the file arobject updates its notion of the current

file size.

6.6.2.3 Atomic File Manipulations

The operations on atomic files are quite similar to their counterparts for normal and permanent files.

The main difference is that atomicity of the operations has to be guaranteed whenever the file is

manipulated The FAOpen and FAC/ose operations are the same as described in the previous

section, since these operations only affect the OCL and RCL data structures, and do not touch the

atomic file data.

The FARead and FA Write operations are implemented as elementary iransactions. so that they can

be arbitrarily nested inside of other transactions. The FARead operation invokes the Copy

mechanism for copying the data from the file arobject's address space to the client's address space.

For the FA Write operation however, the AtomicCopy operation is invoked, which updates the file in

the main memory, and also propagates the write operation to the Atomic Page Set Subsystem (refer

Section 6.7.2).

176

6.6.3 Prefix Map Management

The directory of the ArchOS File Subsystem is distributed across multiple nodes ind multiplh, ,s

of the system. Specihcally, all directory entries with a particular prefix are on a particulair logical dsK.

Hence. we need to maintain a system wide table which can map the dir,ictory frawn-'rits

corresponding to different prefixes. to the logical disks on which these fragments reside. The main

function of the File Prefix Map Management Subsystem (or FPMM subsystem) is to maintain this

mapping in a table Known as the Prefix Map Table (or PMT). There is one instance of the FPtM

subsystem at the kernel level of each node of the distributed system. A copy of the entire system ,'ide

Prefix Map Table is maintained by each FPMM instance.

All of the functionality provided by the FPMM subsystem is related to mapping file name prefixes to

10s of appropriate Directory Management Aroblects, which save the directory entries for those

prefixes Once the appropriate Directory Mangement Arobject for a file has been determined, al

future operations on that file are performed either by the File Aroject, or by the Directory Mangement

Aroblect (depending on the operation in question). The FPMM subsystem, on the other hand,

provides operations for accessing and maintaining the Prefix Map Table, e.g. at restart, and when disk

volumes are mounted and unmounted. The ability to create and delete new directory fragments by

adding or removing file prefixes is also provided.

fdm-aid = FPMap(filename)

val = FPRestartO
val = FPMount(diskid)
vat = FPUnmount(diskid)
val = FPAssign(prefix, diskid)
val = FPUnassign(prefix)

val = FPlnsertTable(prefix, diskid, fdm-aid)
val = FPRemoveTable(prefix)
val = FPRequestTable(tabebuffer)

AID fdm-aid The arobject ID of the Directory Management subsystem.

BOOLEAN val TRUE if the specified operation is done successfully, otherwise FALSE.

FILENAME filename
The name of the file for which the specified operation is to be performed.

DISKID diskid The Logical Disk ID of the disk volume being operated on.

177

FILENAME prefix The filename prefix being used in the specified operation

TABLEBUFFER "tablebuffer
The buffer used for returning the contents of the Prefix Map Table.

The F PMap primitive returns the arobject ID of the Directory Mangement Subsystem instance which

manages the directory fragment for the given file. This primitive will usually be invoked by the Client

Arobject Interface, when the first operation (e.g. CreateFile or OpenFile) is requested by a client.

Once the appropriate Directory Management Arobject for a specific file has been determined, any

further requests relatd to that file will not be addressed to the FPMM Subsystem.

The main purpose of the FPfestart primitive is to reconstruct the Prefix Map Table. This is done by

determining which disks are mounted on this node, and by acquiring information from the PMTs

residing at other nodes in the system. The FPMount primitive is used when a disk volume is mounted.

If the new disk has a portion of the director/ on it, the Prefix Map Table is modified to reflect this, and

an FDM arobject is created to manage that directory. The FPUnmount primitive is used when a disk

volume is removed. Any entries corresponding to this disk in the Prefix Map Table are removed, and

the FDM arobject is informed.

The FPAssign and FPUnassign primitives are used for adding and removing prefixes to and from the

entire file system directory. A new prefix can be added to the specified disk irrespective of whether

the disk already has a part of the directory on it or not. When a new prefix is added, modifications are

made to the Prefix Map Table and to the disk itself. An FDM arobject for the disk also has to be

created, if it does not already exist. The FPUnassign primitive removes a prefix from a disk by making

modifications to the PMT and to the disk. It also informs the FDM arobject if necessary. This primitive

will execute only if the prefix being unassigned does not correspond to any existing files; otherwise an

error indication is returned.

Three primitives are provided for obtaining and modifying information from the Prefix Map Table.

These primitives will be invoked primarily by FPMM arobjects on other nodes of the system. The

FPlnsertTable primitive inserts a new entry into the PMT, which consists of the directory prefix being

added, the ID of the logical disk on which the directory portion exists, and the ID of the FDM arobject

responsible for the management of that directory portion. The FPRemoveTable primitive removes the

specified prefix entry from the PMT. The FPRequestTable primitive asks for all the contents of the

PMT to be returned in the buffer provided.

178

6.6.3.1 Components of the Prefix Map Management Subsystem

The FPMM subsystem consists of three components: (1) the Prefix Map Table or the PMT, (2) the

Prefix Map Manager process, and (3) the Prefix Map Worker process (refer Figure 6 17). The PMT

keeps a copy of the entire system wide mapping between prefixes and directory locations. Its entries

are a series of triples consisting of the file name prefix, the ID of the logical disk containing the

directory fragment corresponding to this prefix, and the ID of the FDM arobject which manages this

directory fragment. It is important to ensure the consistency of the multiple copies of the PMT.

Accept Prefix Map Table
FP Reply

,per a:* 1 n Result

Prefix Dlsk ID t4anrq,1 .r AlD

Pref x

Maap

Manarger

Rl
e p ly

With
"Tabl e" Request
Operation "1Tab~le"

\ / Operations
Request\ To Peers

~Reply
Results

Figure 6-17: Components of the Prefix Map Management Subsystem

The Prefix Map Manager process is responsible for providing most of the functionality of the FPMM

subsystem. It accepts all requests for FPMM operations, and returns the results. The only purpose of

the Prefix Map Worker process is to wait on behalf of the Manager process when peer level primiives

are invoked by the Manager process. These primitives (FPlnsertTable, FPRemoveTable,

FPRequestTable) are used for maintaining system wide consistency between the PMT instances. In

the absence of the Worker process, deadlocks can arise if multiple peer operations are in progress

concurrently.

179

6.6.3.2 Directory Mounting and Reassignment

In order to under' .tfih the implementation of the primitives /-P1Mount, FPfUI r utjrit. Ind, i.:,Jfl. an(1

" sg', it is import-nt to have some information about the layout of the logical disk volumes.

There s a special P,',ge (Pa(ge 0) on each disk volume which contains information about the contents

and location of several important data structures stored on the disk. Hence, by examining Page 0, it is

possible to determine whether there are any directory fragments on the disk, and if so, what file

prefixes they correspond to.

A' .ien a logical disk is mounted on a node. the FP!,ount primitive is invoked on that node to udate

the PMT if necessary. First. Page 0 of the disk is checked to see whether the disk has a directory

fragment cn it. and if so. to determine the prefixes which are mapped on it. All these prefixes are then

entered in the local copy of the PMT, along with the ID of the logical disk. An FDM aroblect is created

and initialized to manage the newly mounted disk directory, and its arobject ID is entered in the PMT.

This completes the updating of the local PMT. All newly added entries are now sent to all other

instances of FPMM by invoking the FPInsertTable primitive on peer FPMM arobjects.

When a disk is unmounted, the FPUnmount primitive is invoked. If there are any entries in the PMT

which correspond to this logical disk, these entries are removed. The FDM arobject for that disk is

cleaned up and destroyed by invoking the FOUnmount primitive. Furthermore, peer FPMM arobjects

are informed by invoking the FPRemoveTable primitive.

The FPAssign primitive assigns a new prefix to a particular logical disk. First Page 0 of the disk is

checked to see whether it already has a directory on it or not. If there is no directory, a directory root

page set is created on that disk, and a pointer to its root page is entered in Page 0, along with the new

prefix being added. An FDM arobject also has to be created to manage the directory on this disk. An

entry is added to the PMT corresponding to the new prefix, logical disk, and FDM arobiect The

addition of a new prefix to a disk which already has a directory fragment on it is much simpler. It only

requires a new entry on Page 0 of the disk and in the PMT, since the directory root page set and FDM

arobject are already present. In both cases, once the PMT has been updated, the peer FPMMs are

informed of the new entry.

The FPUnassign primitive removes a directory segment (corresponding to a prefix) from a disk.

However, this operation is only allowed when there are no files in the system which correspond to that

prefix. First, the prefix is removed from Page 0 of the disk. If, as a result of this removal, there are no

more prefixes left on the disk, the directory root page set also has to be freed. If the disk has no

directory segment left on it, the FDM arobject for the disk is, destroyed by invoking FDUnmount. In

180

any event, the entry for the prefix is removed from the PMT, and the peer FP,1Ms are informed of the

removal.

6.6.3.3 Restart

The main purpose of the FPRestart primitive is to recreate the Prefix Map Table. To do this, the

Manager process first invokes the Worker process to obtain the PMT (with FPRequestTable) from one

of the other nodes in the system. In the meantime, the Manager itself checks the Mount Table of its

node (see Section 6.7 4) to determine all the logical disks on the node. For each mounted disk, it

essentially executes the functionality of the FPkfount primitive. It checks Page 0 for prefixes, enters

these in the PMT, and creates an FDM arobject for each disk with a directo-' fragment. Once all

entries are made to the PMT, all peer FPMMs are informed of the new entries.

There was a danger of deadlocks in the restart sequence, especially if multiple nodes happened to

come up at the same time. To avoid deadlock, a separate Worker process is provided, Which waits on

the peers FPMMs. In addition, a timeout is associated with the FPRequestTable primitive to avoid

.ndefinite blocking. If several nodes come up at the same time, each node can incorporate entries in

its PMT pertaining to its own logical disks, and then send this information to the other nodes.

6.6.4 Directory Management

The main purpose of the Directory Management Subsystem is to maintain a part of the file directory,

and thereby map filenames occurring in this directory fragment to their corresponding global page set

identifiers This mapping determines the logical ci,K on which the file resides, and the ID of the page

set aroblect which manages the root page set for the file. In addition to the mapping information, the

director/ also maintains static file information, such as creation date, modification date, and file

length. An instance of the File Directory Management Subsystem (FDM Subsystem) exists for each

disk with a directory fragment on it.

Operat;oiis which require directory napping information, such as FDOpen, FDC/Ose, FDCreate, and

FDDelete, are all supported by the FDM subsystem. Filename matching operations, such as finding all

files with a matching prefix, are also directory oriented operations, and are performed by this

subsystem. In addition to these operations, primitives are provided for accessing and modifying the

directory entries.

181

fa-aid = FDOpen(filename)
fa-aid = FDCreate(filename. type [, node])
action = FDClose(modified, filesize)
vai = FDDelete(filename)
val = FDUndeleteAtomic(filename)
val = FDExpungeAtomic(filename)

val = FDSync([filename])
last FDFind(prefix, after, comp, buffer, bufsize)

val = FDlnsert(filename, file-info)
val = FDGet(filename, file-info)
val = FDRemove(filename)

val = FDRestart(diskid)
val = FDUnmount()

AID fa-aid The ID of the File Arobject, corresponding to the file being opened or created

FOACTION action Specifies one of three possible actions to be taken; CONTINUE, DEACTIVATE, or
KILL.

BOOLEAN val TRUE it the specified operation is done successfully, otherwise FALSE.

FILENAME last A number of components or tails (depending on the value of comp) of filenames
are found, matching the given prefix. The last component or tail is returned in the
last variable. If the end of the list of components or tails nas been reached, a
special value (NULL) is returned.

FILENAME filename
The name of the file for which the specified operation is to be performed.

FILETYPE type The type of file to be created: NORMAL, PERMANENT, or ATOMIC.

NODENAME node The ID of the preferred node on which the file should be created.

BOOLEAN modified
Flag which specifies whether the file has been modified or not.

INT filesize The size of the file in bytes.

FILENAME prefix The filename prefix which has to be matched, and corresponding to '.hich all
filename components or tails of filenames have to be returned.

FILENAME after The value returned by the variable last is used here. Hence it is ,.-ithfr a
component or tail of a filename. Matching of components or tails has to start after
this element. If the value of after is NULL, matching starts from the first element.

182

BOOLEAN cornu If the value is TRUE, only the next components of the filenames following the
matching prefix are returned. If the value is FALSE, the entire tails of filenames
are returned.

BUFFER *buffer The audress for the data buffer.

INT bufsize The size of the buffer being provided.

FILEINFO file-info Returns all the information about a file saved in the directory entry.

DISKID di id The Loqical Disk ID of the disk volume being operated on.

The FDCcen Vimitive opens an existing file. If this is the first FDOpen operation on the file, the

Arobject/ Process Management Subsystem is called upon to activate the inactive file arobject, and

return the 0 oi the active file arobject. If the file has already been opened, the count of opens is

incremented, and the ID of the active file arobject is returned. If the file does not exist, an error is

returned The FDCreate primitive creates a file of the specified type (NORMAL. PERMANENT. or

ATCMIC) on the preferred computing node, if possible. The Arobect/Process Management

Subsystem :s requested to create a file arobject of the appropriate type, and the ID of this arobject is

returned, A director' entry for the newly created file is added. Following creation, the file is opened.

If the file already exists, an error is returned.

The PDCcse primitive is always invoked by the file arobject, when some client has requested the

FAC/cse operation. It responds by specifying one of three operations (CONTINUE, DEACTIVATE, or

KILL), to be carried out by the file arobject. It also modifies the static file information saved in the

director,. If the file has been modified, the modification date and time is changed to the present time,

and the file length is updated,

The actions taken by the FDDelete primitive depend on whether the file is open or not at the time of

the request. If the file aroblect is inactive, FDDelete deletes the file and removes its directory entry. If

the file is open at the time the FDDelete request is received, a clean file deletion is provided. Further

FDOpen operations are not allowed, and once the file has been closed by all current users, it is

del9ted. In the case of atomic files, the FDDelete primitive merely flags the file (in the directory) as

deleted, so that it can be recovered in case the transaction is aborted.

The FDUndeleteAtomic and FDExpungeAtomic primitives are provided to allow atomic deletion of

files. The FDDelete primitive for an atomic file sets a flag in the directory entry Aftcr the transactioi

183

commits, the garbage collector can invoke the FDExpungeAtofnIc prinitive.34 which removes the

directory entry, and expunges the file. If, on the other hand, the transaction has to be aborted. the

FDDelete can be undone by the FDUnde/eteAtomic primitive, since the file has not been expunged.

The FDSync operation ensures that any buffered directory information pertaining to the specified

file is synchronized with the version saved on disk. If a file name is not specified, the contents of the

entire directory buffer are synchronized.

The purpose of the FDFind primitive is to allow some of the convenience of hierarchical directories.

In a file system with a hierarchical directory, it is usually possible to search for all files and

subdirectories which exist in a particular directory. The FDFind primitive implements the same notion

in our "flat" file name space. Given a file prefix (parallel to the full pathname of a directory) it can find

all the components (filenames or subdirectory names contained in the directory). It is also possible to

find the full tails of all matching file names (parallel to doing a recursive directory search). The

boolean variable comp determines which type of search is undertaken: for matching components or

tails. Since the buffer for returning the matching elements may not be able to hold the entire list of.

matches found, the last matching element is returned as the result of the FDFind primitive. The

search can begin after this element when the next FDFind operation is invoked.

Three primitives are provided for manipulating the directory entries. The FDInsert primitive allows a

new entry to be inserted in the directory. The FDGet primitive allows the directory entry for a

particular file to be read, and the FDRemove primitive removes the entry for a particular file. These

primitives can be used by the Client Arobject Interface to provide several useful functions to the

client. For example, the RenameFile primitive is implemented by first obtaining file information using

FDGet, then removing the old directory entry with FORemove, and finally adding a new directory entry

with FDInrsert to correspond to the new file name.

The FORestart primitive is primarily an initialization operation, invoked when the FD arobject is

created. A cleanup operation on the logical disk associated with this FD arobject instance is initiated.

The directory is checked for all normal files, and the Page Set Subsystem is asked to free all page sets

corresponding to these files. Their directory entries are also removed. The FDUnmount operation is

invoked when the logical disk associated with this FDM instance has to be unmounted cleanly. Once

an FDUnmount has been received, FOM does not accept any new operations except FDClose. When

all currently open files have been closed, it sends a reply to the requestor of FDUnmount, and

destroys itself.

34The FDExnungeAtomoc operation can ,iternatively be mvoed by the transaction manager. or .-,v',o the lient.

184

6.6.4.1 Components of the Directory Management Subsystem

The FDM Subsystem consists of three main components: (1) the Directory Manager process, (2) the

buffer for the directory B-tree, and (3) the Open Files Table. In addition to these components, a few

other items of information are also maintained, such as the logical disk ID, and some flags. The three

components are shown in Figure 6-18, and described briefly in this section.

The Directory Manager process is responsible for providing all of the functionality of the FDM

subsystem. It accepts all requests for FOM operations, and returns the results. It manages all the

FOM d,ta structures as veil. In order to maintain the directory buffer, it invokes operations on the

Page Set Subsystem.

Page Page
I j

Page Free

k

Accept Reply
FO Results

Operations

Directory
B-Tree Buffer

Directory

Manager

File FA Count

Name AID of F1dgs
Request I/ Reply onens

Page Set Results

Operations

File Name Strings

Open Files Table

Figure 6-18: Components of the Directory Management Subsystem

The file system directory uses a B-tree structure, and is saved on disk as a ,fui, 1:'

sets (refer Section 6.6.4.2 for details). Some of the pages of the directcr, -

NAA (KI AN SSTI MS(NTI R.SAN DIF;, A m 3
(N(IITS &I JTINIQ1 S I OR StPRT 0:RFAL TIMO NOSCTDI1113

DSTRSIB I' 1 PRATING SYSTIM NS LN(LASSIIII
BY:(ANA Ml O INV RIYJ1 857

185

iemory by the FDM subsystem, in a data structure kn n as the Directory Buffer. The FDM Manager

rocess interacts with the Page Set Subsystem in obtaining directory pages from disk, and in writing

ack any dirty buffered pages.

The Open Files Table keeps track of the files which are open. It maintains the names of these files,

ieir arobject IDs, and the number of outstanding opens on each file. In addition, it maintains some

ags, such as for open files which are deleted (or expunged). Whenever an FDOpen request is
received, the OFT is first checked to see whether the file has already been opened or not. When a file

'3 opened for the first time, an entry is made in the OFT, but for subsequent opens, the count of

cutstanding opens is incremented. For each FOCIose operation, the count of outstanding opens for

that file is decremented. If the count becomes zero, the entry is removed from the OFT, and the file

arobject is told to deactivate itself. If an FDDelete operation is received on an open file, a DELETE

flag is set in the OFT. Further FDOpen operations are not allowed, but FDClose operations are

accepted, to achieve a clean deletion. Once a DELETE flag has been set, the file arobject is told to

kill itself at the time of the last close operation. 35

6.6.4.2 The Directory B-Tree

The file system directory maps file names to global page set IDs. It also saves some static

information for each file: the date and time of creation and last modification, the file type, the file

length, and some flags (e.g. the DELETED flag, to mark files which have been deleted but not

expunged). Logically, the file system directory fragment on a particular disk is an independent B-tree.

The entries in this B-tree are ordered by the filename (in alphabetical order). Each node of the

directory B-tree is implemented as a page set. Thus, the directory is implemented as a set of page

sets, which are maintained on disk by the Page Set Subsystem.

The structure of a node in the directory B-tree is somewhat complex (refer Figure 6-19). Each node

of the directory B-tree contains a large numblr of entries (200 to 250). Luyicaliy, each di.ec.iury entry

is a triple consisting of the filename, the global page set ID, and a pointer to the file information block.

The actual implementation is complicated by the fact that file names have variable sizes. Henroe,

instead of keeping the file name as the first element of the triple, a pointer to the file name is kept.

This file name pointer is a byte offset from the start of the area for saving the full file names.

Each node of the directory B-tree is a page set. The first page of this page set is the header page,

351f an atomic file is deleted in this way, its file arobject is deactivated, and not killed. A flag is set in the directory entry for
the tile, dicating that it has been oeleted, and further operations on that file, other than FDUntJelvteAtornic or
FOExPungeAtomic, are not allowed.

186

Global Page Fil '
File Name Set t (gpsid) File Info

Page

Filtnfc Blocks Paqes
1 and 2

Pages
File Name Strings 3 and up

Figure 6-19: Structure of a Directory B-tree Node

which contains a series of triples. The first element of the triple is a pointer to the full file name, the

second is the global page set identifier, and the third is a pointer to the information block (fixed size)

for this file. If the node is internal (not a leaf node in the tree), the page set ID points to the node of the

B-tree to be searched next. However, if the node is external (a leaf node), the page set ID refers to the

location of the file (ID of the root page set for the file). The second and third pages of the node page

set are reserved for the file information blocks. These pages will be unused in the case of internal

nodes. The full file names are stored starting at the fourth page. Hence, the pointer to the file name

holds a byte offset from the start of the fourth page. 36

36For efficiency reasons, the file name pointer may actually consist of two parts: a prefix pointer, and a last comnonent
pointer. Since file names are typically long, and many of the file names for a given directory node diler only in tie valtics of
their last components, this scheme of storing names should significantly reduce directory storage requir,;fnents

187

6.6.4.3 FDM File Manipulation Operations

In this section, we will briefly discuss the key interactions of the of FDM file manipulation operations:

FDOpen, FDCIose, FDCreate, FDDelete, FDUndeleteAtomic, and FDExpungeAtomic. Each of these

operations (except FDCIose) is invoked by some Client Arobject Interface, and the result is returned

there.

When the operation FDOpen is requested, the Open Files Table is first checked to see whether the

file has already been opened. If this is indeed the case, the arobject ID for the file can be determined

from the OFT. No further action is required, except the updating of the count of opens for the file.

However, if this is the first open request, the inactive file arobject has to be activated. First the

directory B-tree is searched (by bringing appropriate directory pages into the Directory Buffer) to find

the global page set ID (GPSID) for the (root page set of) file in question. Then the Arobject/Process

Management Subsystem is called to activate the arobject for the given page set, and return the file

arobject ID. An entry for this file arobject is now made in the OFT. Also, the newly created file

arobject is initialized by invoking the FARestart primitive. This completes the FDOpen sequence, and

the new file arobject ID is returned to the FDM subsystem.

The FDCreate sequence is similar in flavor to the FDOpen sequence. First the directory B-tree is

checked to be sure that the file does not already exist. Next, the Arobject/Process Management

Subsystem is invoked to create a new file arobject of the specified type. The A/PM also decides

where the new file is to be placed37. The GPSID and the arobject ID for the newly created file arobject

are returned by A/PM. An entry for the file is created in the directory, and in the OFT. Finally, the

new file arobject is "restarted" (with FARestart), and its ID is returned to the FDM subsystem.

The FDC!ose primitive is always invoked by the file arobject, when a client has requested an

FACIose operation. The FOM subsystem responds to this operation by specifying one of three actions

for the file arobject: CONTINUE, DEACTIVATE, or KILL. When FDCIose is requested, first the count

of outstanding open requests in the OFT is decremented. If some outstanding opens still remain, the

CONTINUE command is given to the file arobject. If however, there are no outstanding opens, the

entry for this file in the OFT is deleted. If the file has been modified (modified is TRUE), the

information blocks for the file are updated. Finally, the file arobject is asked to deactivate itself. The

last FOCIose operation on a file is somewhat different if the file has already been flagged for deletion

by some other 61ient. The directory entry for the file is removed, and the file arobject is a.ked to kill

itself (which automatically removes the associated page sets).

37The file placement algorithm is subsumed by the arobiect and process placemenit 19orithm, and is iinptrniviteud by the
Arobect/Process Management Subsystem. If a preference for placement is specified. this is ta r, into account in miaking the
ftnaj decision

188

The implementation of the FDDelete primitive is quite straightforward. If the file arobject is inactive

when the primitive is invoked, the Arobject/Process Management Subsystem is called to destroy the

inactive file arobject (which removes the relevant page sets), and the directory entry for the file is

removed. If the file is active at the time FDDelete is called, the delete flag is set for the file in the OFT.

At the time of the last FDCIose operation, the file is deleted by destroying the active file arobiect.

The handling of the primitives (described above) for atomic files may be somewhat different.

Creating, deleting, opening, and closing files atomically is a part of the bigger and more general

problem of creating, deleting, activating, and deactivating arobjects atomically. Hence. these issues

have to be addressed in a unified manner. At present, some hooks have been provided, which help in

treating these primitives (especially FDDelete) as compound transactions with compensation actions.

Thus, when an atomic file is to be deleted, the directory is merely flagged as deleted, but the arobject

is not destroyed. Once the highest level transaction has committed, the garbage collector can

expunge all "deleted" files, by calling FOExpungeAtomic. If the transaction has to abort, the deleted

file can be reclaimed by calling FDUndeleteAtomic.

6.6.5 File Management Scenarios

In this section, we will show how the four subsystems within the File Subsystem interact with one

another, and with other subsystems in the kernel, to provide the specified functionality. We will

examine the operations most frequently encountered in the lifetime of a file, and thereby explain the

interactions within the File Subsystem.

The CreateFile primitive is invoked by the client when a new file has to be created. In response to

this request, the Client Arobject Interface has to first determine the ID of the Directory Management

arobject which will manage the directory fragment corresponding to the new file. The Client Arobject

Interface first invokes the FPMap primitive (refer Figure 6.20). The FPMap operation is accepted by

the FPMM Manager process, which checks the prefix of the filename in the Prefix Map Table, to

determine the ID of the corresponding FDM arobject (let this value be fdm-aid). The result of the

FPMap operation (fdm-aid) is returned to the Client Arobject Interface. The CA Interface now invokes

the FDCreate operation on the correct instance of the Directory Management Arobject (fdm-aid). The

FDM Manager reads relevant pages of the directory into the buffer, and ensures that the file does not

already exist. It then calls the Arobject/Process Management Subsystem to create a file arobject

(using the CreateArobject primitive). The Arobject/Process Management Subsystem returns the ID of

the newly created file arobject. Next, the FetchArobjectStatus primitive is used to determine the

global page set ID for the root page set corresponding to this arobject. The Directory Manarjer then

189

Cl ient* S
t / code (d)

CreateFile f1 d (14)
CA f lesize

Interface

(13)
FAOpen

(2) (3)
Pa dm-afdm

(4) (12)
FDCreate FPMM fa-aid

val

FOM
(to)

(5) (7) FARestart

CreateArobject fa-ad

(8) (9)
FetchArobjectStatus'> A/PM gpsld

(6) Create

Figure 6-20: Interactions in the Implementation of the CreateFile Primitive

makes an entry in the directory for the new file, showing the mapping of its filename and its GPSID. It

writes the creation date in the file information block. It also invokes the FARestart operation on the

newly created file arobject to initialize it, and provide some information such as the file size. The FOM

Manager makes an entry for the file in the Open Files Table, and returns the ID of the file arobject to

the Client Arobject Interface. The CA Interface calls the File Arobject with an FAOpen request. The

open operation is carried out, and the current filesize is rcturned. The CA !nterface then returns to

the client with the ID of the file.38

The interactions of the OpenFile primitive are quite similar to those of the CreateFile primitive. First,

the FPMap primitive is invoked by the Client Arobject Interface. Then, the FDOpen operation is

invoked. If the file has not already been opened by some other client, the FOM subsystem reads the

directory into the buffer to determine the global page set ID for the file. It then invokes the

Arobject/Process Management Subsystem to activate the inactive file arobject corresponding to the

38The file ID returned to the client arobject is different fromdlhe If) of the corresponding file arobject. The CA Interface
maintains a mapping between the longer file arobject ID, and the shorter file I0 which it generates

190

GPSID. The active file arobject is initialized by FARestart, and an entry is made in the Open Files

Table. The file arobject ID is returned to the CA Interface subsystem. Finally, FAOpen is called, and

the interactions of O., nFi/e are complete.

The interactions in ReadFile and WriteFile are quite straightforward. The ReadFile and WriteFile

operations given by the client are buffered by the CA Interface. The FARead and FA Write operations

are invoked by the CA Interface as necessary. This reduces the number of interactions with the file

arobject.

() ' Code (6)

> CA Val

Interface FA

L (2)
FAClose

(3) (4)

FOClose Kill.
D Deactivate.
or Continue

(7)
Kill Arobject or
Deactivate Arobject

(8)

Z11 or Deact ivat ej

Figure 6-21: Interactions in the Implementation of the CloseFile Primitive

The CloseFile operation given by the client is translated to FAC/ose by the CA Interface (refer Figure

6-21), after first flushing the CA Interface buffers. The file arobject removes the client from the Open

Client List, and invokes the FOClose operation. The information block for the file is updated, and the

file is closed as explained in Section 6.6.4. The file arobject is told to CONTINUE, DEACTIVATE, or

KILL itself, depending on other outstanding open requests, and whether the file has been deleted by

some other client. The file arobject replies to the FAClose operation, and then executes the specified

191

action. If it has to deactivate or kill itself, it calls on the Arobject/Process Management Subsystem to

perform the necessary operation.

The interactions for DeleteFile are quite simple. The DeleteFile operation is translated to FDDelete

by the CA Interface, after first using the FPMap operation if necessary. The FDM subsystem calls the

Arobject/Process Management Subsystem to destroy the inactive file arobject, and then removes its

directory entry. If the file is open at the time the operation is invoked, a DELETE flag is set in the Open

Files Table, and the deletion is completed at the time of the last FDCIose operation.

6.7 Page Set Subsystem

The main purpose of the Page Set Subsystem is to provide an abstract interface to the physical

secondary memory storage devices (disks). The abstraction provided is that of a set of logical disks,

each of which holds some number of page sets. A logical disk is a contiguous region (partition) of a

physical disk, consisting of N logical pages, numbered from 0 to N-1.19Each physical disk can contain

at most one ArchOS logical disk. However, the logical disk can be located anywhere on the physical

disk, and can possibly cover the entire disk. Each logical disk has a unique identifier (logical disk ID)

permanently associated with it, i.e. it will always have the same logical disk ID, regardless of which

node or disk drive the disk is mountted on.

A page set is (conceptually) an infinite set of pages, numbered 0, 1, 2. Any pages of a page set

which have not been explicitly written, are defined as containing all zeros.4Pages can be read or

written in any order within a page set, i.e. the pages of a page set are randomly accessible, and

sparse page sets are permitted. All of the pages comprising a single page set will be located on the

same logical disk. This helps reduce the number of page sets which would be affected by any single

disk or node failure. Every page set is given a page set ID, which is unique within the logical disk on

which it resides. A globally unique page set identifier (GPSID) can then hP cnn.truicted by combining

the logical disk ID with the page set ID.

ArchOS supports two different classes of page sets: standard page sets, and atomic page sets.

Standard page sets themselves come in three types: temporary, permanent, and dual. Temporary

page sets are intended to provide short term storage for data on secondary memory. They are

destroyed, and their pages automatically reclaimed by the system, following a crash. Temporary page

39Currently a page is defined to be 2K bytes in size, but that is a parameter which can be changed and tuned to obtain

"optimum" performance.

40 Of course, such unwritten pages do not occupy any space on the logical disk

192

sets are primarily used as the paging areas for the "volatile" segments of process address spaces,

such as the User Stack, User Heap, and Shared Normal Segments (see Section 6.2.3.5). In particular,

normal file arobjects (see Section 6.6) store all of their data in volatile segments, and hence in

temporary page sets.

Permanent page sets are primarily used to store permanent abstract data type instances, such as

permanent files. Permanent page sets survive system crashes, but their consistency following a crash

is not guaranteed. If a permanent page set was being actively modified at the time of a crash, some of

the modifications may be permanently recorded while others are lost. Furthermore, if a page was

being written precisely at the time of the crash, that page could be written incorrectly, resulting in the

loss of some data. Note that permanent page sets closely resemble the notion of "files", as

commonly found in more conventional operating systems.

Dual page sets are like permanent page sets, except that each page is written atomically. If a crash

occurs while writing a page in-a dual page set, either the new contents of the page will be

permanently and correctly reorded, or the original contents will be recovered (as if the write

operation had never occurred). The atomic writing of an individual page is accomplished by carefully

writing two copies of the page (hence the name "dual" page set). For more details, see the

explanation of "stable storage" in [Sturgis 801. Dual page sets are used for storing key data

structures, such as file system directories, for which it is important to minimize the amount of damage

in the event of a crash.

The final type of page set supported by ArchOS is the atomic page set. Atomic page sets actually

represent a second major class of page sets, differing (somewhat) from standard page sets, both in

terms of their implementation and their user interface. Atomic page sets permit the grouping of

operations into atomic transactions, (either all of the operations will be completed, or none of them

will be). The operations comprising a single transaction can involve multiple atomic page sets, stored

on any number of different logical disks, and spanning any number of system nodes. Furthermore,

operations are not restricted to being page.oriented. Instead, arbitrary sequences of bytes can be

read or written. Thus, two separate transactions can modify different parts of a single page, without

interference or unexpected inconsistencies arising.

Atomic page sets also support the notion of nested transactions. Both elementary and compound

transactions can be arbitrarily nested, as explained in Section TMSEC. The commit or abort of a

(sub)transaction will be properly reflected in the contents of the affected atomic page sets. To

support this, the atomic page sets contain the intermediate states of all of the incomplete, nested

193

transactions, in addition to the "current" page set contents. Atomic page sets provide complete

failure atomicity for "soft and clean" failures, as defined in [Bernstein 83]. However, the consistency

of atomic page sets in the face of "concurrent" updates from separate transactions is not

automatically guaranteed. The lock management primitives of the Transaction Subsystem must be

used to ensure such consistency (see Section TMSEC). Atomic page sets are used to store atomic

abstract data type instances, such as atomic files.

The Page Set Subsystem is implemented using four different types of kernel arobjects. Each node

of the distributed computer system will contain one or more instances of these four arobjects, as

illustrated in Figure 6-22. For each physical disk that is mounted on a node, a corresponding instance

of the Logical Disk Subsystem, the Standard Page Set Subsystem, and the Atomic Page Set

Subsystem will be created. In addition, each node will contain a single instance of the Page Set

Restart/Reconfiguration Subsystem. Figure 6-22 shows the "uses" relationships among these

component subsystems.

Page Set
Restart/ReconfiguratIon

Subsystem

Standard Page Set Atimic Page Set Standard Page Set Atomic Page Set
Subsystem (13 Subsystem (1] Subs em (3] Subsystem (J]

Logical Disk Logical Disk
Subsystem [I] Sut :ystam [J

rPhysical Physical

Disk [13 Disk (J3

Figure 6-22: Major Components of the Page Set Subsystem

194

The Logical Disk Subsystem builds the logical disk abstraction (discussed above) on top of the

available physical disk hardware. It manages the allocation of pages on the logical disk, and supports

multi-page read/write operations to/from either local or remote primary memory (buffer) areas. The

Standard Page Set Subsystem provides support for the three types of standard page sets: temporary,

permanent, and dual. It constructs these page sets using the facilities of the corresponding Logical

Disk Subsystem. Similarly, the Atomic Page Set Subsystem manages all of the atomic page sets that

are stored on the corresponding logical disk. Finally, the Page Set Restart/Reconfiguration

Subsystem (one per node) is responsible for constructing the three "per-disk" subsystems, for ea-h

disk that is mounted on its node. It allows disks to be "dynamically" added and removed from the

system, without requiring the associated node to be completely restarted. In conjunction with this,

the Page Set Restart/Reconfiguration Subsystem cooperates with its peers on other nodes, to

maintain a global list (replicated at each node) of all the disks mounted anywhere within the

distributed computer system.

6.7.1 Standard Page Set Subsystem

An instance of the Standard Page Set Subsystem kernel arobject is associated with each logical

disk in the system. The Standard Page Set Subsystem supports three types of page sets: temporary,

permanent, and dual. The same set of operations are provided for each of these types of page sets,

but the semantics of some of the operations vary slightly, depending on the page set type. For

example, the writing of pages in a dual page set is handled differently than in the case of a temporary

or permanent page set. The Standard Page Set Subsystem supports multi-page read/write access to

the contents of page sets, allowing greater efficiency than would be possible with a page-at-a-time

interface. The following is the complete list of primitives provided by the Standard Page Set

Subsystem:

psid = PSCreate(type)
val = PSDestroy(psid)

npr = PSRead(psid, pnum, npages, buffer)
val = PSIsZero(psid, pnum, npages)
npw = PSWrite(psid, pnum, npages, buffer)
npw = PSZero(psid, pnum, npages)
val = PSMove(psid, pnum, npages, to-pnum)

val = PSSync([psid])
val = PSStatus(psid, statusbuffer)
val = PSRestart(disk-aid [, fast])

195

PSID psid The identifier for the page set (unique within the logical disk). It includes an
indication of the page set type: TEMPORARY, PERMANENT, or DUAL.

BOOLEAN val TRUE if the specified operation is completed successfully; otherwise FALSE.

INT npr, npw The actual number of pages read or written.

PSTYPE type The type of page set to be created: TEMPORARY, PERMANENT, or DUAL.

INT pnum The starting page number, within a page set, for the specified operation.

INT npages The number of pages involved in the specified operation.

BUFFER "buffer The buffer address in the kernel address space of either the local or remote node..

INT to.pnum The destination page number, to which the specified pages are to be moved.

PSSTATUSBUFFER *statusbuffer
The buffer address for returning status information (can be either a local or
remote kernel address). '

AID disk-aid The arobject ID of the Logical Disk Subsystem, associated with the disk t6 be
used by this instance of the Standard Page Set Subsystem.

BOOLEAN fast TRUE if 1his is to be a fast restart, avoiding all of the disk checking and garbage
collection; otherwise FALSE. The default is FALSE.

The PSCreate primitive is used to create a new page set, of the specified type, on the disk

associated with this instance of the Standard Page Set Subsystem. The identifier for the new page set

(psid), which is unique within this logical disk, is returned. Initially, no pages are actually allocated to

the page set, i.e. reading any page will return all zeros. The PSDestroy primitive frees all pages

be!onging to the specified page set (psid), and removes a!l record of that page st-A from the disk.

PSRead reads multiple (npages) pages, beginning with pnum, from page set psid, into the given

primary memory buffer. If the buffer is located on a remote node, the required copying of data across

the network will be handled automatically by the Logical Disk Subsystem (see Section 6.7.3). Any

pages which have never been explicitly written will be read as all zeros. PSRead returns the number

of (non-zero) pages which were actually read. PSIsZero can be used to check whether the specified

range of pages, in the given page set, are all zero (unallocated). If so, it returns TRUE; otherwise

FALSE.

196

PSWrite writes multiple (npages) pages from the given primary memory buffer, into page set psid,

beginning at page number pnum. The number of pages actually written is returned. As with PSRead,

the buffer can be located on either the local or a remote node. Any necessary cross-network data

copying will be handled automatically by the Logical Disk Subsystem. PSZero provides a means for

efficiently "zeroing" (deallocating) a range of pages within a page set. It is especially useful for

"truncating the tails" of page sets, which is accomplished by zeroing the highest numbered

(allocated) pages. The number of pages actually zeroed (i.e. the number of previously allocated

pages which have now been deallocated) is returned.

PSMove can be used to "move" the specified range of pages within page set psid, to the new

location specified by to-pnum. Overlapping source and destination ranges are permitted, with the

result being equivalent to first deallocating all of the pages in the source and destination regions,

followed by rewriting the original source pages into their destination locations. Among other things,

PSMove can be used for "truncating the heads" of page sets, by specifying page zero as the

destination, and moving all of the tail pages forward.

The PSSync primitive ensures that any buffered information within the Standard Page Set

Subsystem is consistent (synchronized) with the information on secondary memory. If a particular

page set (psid) is specified, only buffered information related to that page set is guaranteed to be

consistent with the secondary memory information.41 The PSStatus primitive returns (in statusbuffer)

information about the specified page set (psid). This includes the page set type, its maximum

allocated page number (virtual size), and its actual number of allocated pages (physical size).

PSRestart initializes the Standard Page Set Subsystem, for the logical disk specified by disk-aid. It

checks to ensure that the main secondary memory data structure (the Standard Page Set B-Tree,

discussed below) is accessible and consistent, and ensures that the pages of any dual page sets are

also consistent, by using the DKRecoverDual primitive of the Logical Disk Subsystem (see Section

6.7.3). A side effect of using DKRecoverDual is that all of the pages in the Standard Page Set B-Tree,

and all of the dual page set data pages, will be marked as allocated. PSRestart then marks (as

allocated) all of the data pages belonging to any permanent page sets stored on the disk (see the

discussion of QKMark in Section 6.7.3). Finally, P$Restart "destroys" any temporary page sets which

still reside on the disk, by carefully removing their entries from the Standard Page Set B-Tree.

4 1 This may require much less time than synchronizing all of the buffered information.

197

4 2 PSRestart should only be invoked when the Standard Page Set Subsystem is first created by the

Page Set Restart/Reconfiguration Subsystem (see Section 6.7.4 below), i.e. when the associated

logical disk is first added to the system. The optional parameter (fast) can be used to indicate that a

fast restart is in progress, and hence all of the consistency checks, page allocation ,'larking, and

removal of temporary page sets can be skipped. For more details concerning restart and garbage

collection activities, see Section 6.7.4.

6.7.1.1 Components of the Standard Page Set Subsystem

Each instance of the Standard Page Set Subsystem kernel arobject (one per logical disk) has the

simple structure illustrated in Figure 6-23. It consists of two main components: a single Manager

process, and a B-Tree Buffer. The Manager handles all of the Standard Page Set primitives,

discussed above. It uses the facilities of the associated Logical Disk Subsystem, in order to store,

access, and manipulate the page sets recorded on its corresponding logical disk. Note that the

Standard Page Set Subsystem itself does no buffering of data pages. It is left to the Logical Disk

Subsystem to transfer data directly into and out of client buffers.

Accept
PS , Reply Standard Page Set

Operation Result B-Tree Bufter

B-Tree B-Tree
Node Node

Standard
Page Set 8-Tree B-Tree

Manager Node Node

Request
Logical Disk Reply

(OK) Result
Operation

Figure 6-23: Components of the Standard Page Set Subsystem

4 2
It is assumed (unless a "fast" restart is in progress) that all of the pages on the logical disk have been -freed" prior to

invoking PSRestart. As a result, the page allocation information must be reconstructud, and until it is, all tequests to .illocate
new logical disk pages must be avoided. PSPestart must mark (as allocated) all of the pages which are part of the Standard
Page Set Subsystem. Since none of the data pages from temporary page sets are marked, they are autom.atically freed.
However. the record of the pages allocated to temporary page sets is still stored in the Standard Pige Set B-Tree. ind rniit he
removed. The removal of entries from the B-Tree is a "sale" operation, since it does not require thf! allocation ,f any new
logical disk pages, although it may involve the freeing of some pages from the B-Tree.

198

The B-Tree Buffer holds the most recently accessed nodes (pages) of the Standard Page Set B-Tree

for this logical disk. The Standard Page Set B-Tree is the data structure used to record the sets of

logical disk pages, comprising the standard page sets stored on this disk. The use of a B-tree [Comer

791 for this purpose is quite similar to its use in the Xerox Distributed File System (XDFS) (Sturgis

80, Mitchell 821. The logical structure of the Standard Page Set B-Tree is illustrated in Figure 6-24.

Root
(Interior Node) Interior Nodes Leaf Nodes

Header> HedrHa r

Data
Page

Data
Header Header Page

psid pnum Idpnum

Figure 6-24: Standard Page Set B-Tree

In essence, the B-tree maintains a sorted !ist of data pages, ordered by pane set ID (p-id), and page

number within psid. This allows the mapping from (psid, pnum) to the logical disk page number

(Idpnum) to be be performed very quickly. Each node of the B-tree is stored as a dual logical disk

page, in order to improve the reliability of the data structure. In addition to page mapping information,

each node contains a small amount of header information, which indicates the type of node (interior

or leaf), and the number of page map entries. Every map entry; whether in an interior or a leaf node,

has the same structure (psid, pnum, ldpnum). However, the type of page pointed to by Idprnum will

differ, depending on whether the node is interior or a leaf. A pointer to the root node of the B-tree (its

Idpnum) is stored in page zero of the logical disk, so that the Standard Page Set Subsystem can

199

always find its B-tree data structure.43

Note that the type of each page set (temporary, permanent, or dual) is included in the page set ID

(psid). When a page set is first created, an entry for page number zero is added to the B-tree, with

Idpnum set to zero to indicate that the page has not really been allocated yet. As pages are written or

zeroed, appropriate entries are added or removed from the B-tree. However, there will always be an

entry (whether allocated or not) for page zero of each page set that exists. Note that the structure of

the B-tree allows all of the status information for each page set (its type, logical size, and physical

size) to be determined quite easily. It also permits the pages of a page set to be written, read, and

zeroed very efficiently.

In terms of storage overhead, the B tree structure is also quite reasonable. If we assume that psid,

pnum, and. Idpnum are each 32 bits (4 bytes) long, then a single B-tree node (2K byte page) can

contain 170 map entries, with 8 bytes remaining for header information. Since each leaf page of the

B-tree is dual, and can map 170 data pages, only a little over one percent of the logical disk pages

belonging to the Standard Page Set Subsystem should be needed for storing the B-tree itself.

Furthermore, it should be noted that with 170 entries per node, a three level B-tree can map 1703 data

pages, which is considerably more than can be contained on any disk that is likely to be used as an

ArchOS logical disk. Thus, the Standard Page Set B-Tree will be a maximum of three levels deep.

A special note should be made concerning the Standard Page Set B-Tree Buffer, illustrated earlier

in Figure 6-23. Although (for clarity of exposition) each instance of the Standard Page Set Subsystem

is shown as having its own buffer area, in practice, all instances on a single node would share a

common Kernel Page Buffer Pool. Indeed, the Kernel Page Buffer Pool would be shared with many

other subsystems on that node as well: Logical Disk Subsystems, Atomic Page Set Subsystems, File

System Disk Directory Management Subsystems, and so on. Each subsystem allocates pages from

the Kernel Page Buffer Pool (in least recently used order) as required. Pages are then returned to the

pool (freed) as soon as they are no longer being actively used. Each subsystem maintuins a list of the

"free" pages in the buffer pool, which it has used recently. This list provides "hints" about pages in

the buffer pool which may still contain information of use to the subsystem, i.e. they are buffer pages

which can be reclaimed, rather than reading the information again from disk, assuming the pages

have not already been reused by some other subsystem.

43Page zero of each logical disk is a special dual page, which contains pointers to all ut the ma ior uata siructures on tihe
disk. It also contains information abnut the disk itself, nuclh as its size and its logical disk ID.

200

6.7.2 Atomic Page Set Subsystem

The Atomic Page Set Subsystem is quite similar to the Standard Page Set Subsystem, except that it

provides the "atomic page set" abstraction. The primary difference between the standard and atomic

page set abstractions is that the consistency of atomic page sets will be maintained in the event of a

crash. In addition, the Atomic Page Set Subsystem allows arbitrary sequences of bytes to be read or

written, rather than restricting the operations to being page-oriented. Atomic page sets are primarily

used for storing atomic abstract data type instances, such as atomic files. As with the Standard Page

Set Subsystem, an instance of the Atomic Page Set Subsystem is created for each logical disk in the

distributed computer system.

The Atomic Page Set Subsystem provides primitives for "committing" arbitrarily nested elementary

and compound transactions, in two phases: the prepare phase, and the commiit phase. These two

phases can be used by the Transaction Management Subsystem, as part of its three phase commit

protocol (see Section TMSEC). Using the mechanisms provided here, it is possible to atomically

commit (or to abort) transactions which span multiple logical disks, and multiple nodes. It should be

noted that the Atomic Page Set Subsystem only provides support for the properties of failure

atomicity, and durability [Eswaran76, Gray8l]. The sequencing and scheduling of concurrent

transactions, so as to ensure consistency, is assumed to be handled by the Transaction Management

Subsystem. The actual primitives provided by the Atomic Page Set Subsystem are the following:

psid = APSCreate(tid)
val = APSDestroy(tid, psid)

nbr = APSRead(tid, psid, location, nbytes, buffer)
val = APSIsZero(tid, psid, location, nbytes)
nbw = APSWrite(tid, psid, location, nbytes, buffer)
nbw = APSZero(tid, psid, location, nbytes)
val = APSMove(tid, psid, location, nbytes, to-location)

val = APSPrepareCommit(tid)
val = APSCommit(tid)
val = APSAbort(tid)

val = APSStatus(psid, statusbuffer)
val = APSRestart(disk-aid [, fast])

PSID psid The identifier for the atomic page set (unique within the logical disk). It includes

an indication of the page set type (ATOMIC).

BOOLEAN val TRUE if the specified operation is completed successfully; otherwise FALSE.

201

INT nbr, nbw The actual number of bytes read or written.

TID tid The ID of the transaction to which this operation belongs. From the tid it is
possible to determine the transaction type, as well as the parent transaction ID (if
this is a nested transaction).

INT location The starting location (byte offset from the beginning of the atomic page set) for
the specified operation.

INT nbytes The number of bytes involved in the specified operation.

BUFFER *buffer The buffer address in the kernel address space of either the local or remote node.

INT to-location The destination location, to which the specified bytes are to be moved.

APSSTATUSBUFFER "statusbuffer
The buffer address for returning status information (can be either a local or
remote kernel address).

AID disk-aid The arobject ID of the Logical Disk Subsystem, associated with the disk to be
used by this instance of the Atomic Page Set Subsystem.

BOOLEAN fast TRUE if this is to be a fast restart, avoiding all of the disk checking and garbage
collection; otherwise FALSE. The default is FALSE.

The APSCreate primitive is used to create a new atomic page set, on the disk associated with this

instance of the Atomic Page Set Subsystem. A transaction ID (tid) is specified, so that the new atomic

page set will only come into permanent existence when transaction tid commits. "Until then, the new

page set is only visible within this transaction, or within any nested subtransactions of tid. APSCreate

returns the identifier for the new atomic page set (psid), which is unique within this logical disk.

Initially, no pages are actually allocated to the page set, i.e. reading any part of it will return all zeros.

The APSDestroy primitive frees all pages belonging to the specified atomic page set (psid), and

removes all record of that page set from the disk. As was the case with APSCreate, the specified

transaction ID (tid) determines when the effects of APSDestroy will be permanently committed, as well

as the scope of their visibility in the interim.

APSRead reads nbytes bytes into the given buffer, beginning from byte location in atomic page set

psid. The transaction ID (tid) is taken into account when determining which modifications (if any) to

44If rtd is a nested elementary transaction, the new alomic page set will only come into permanent existe'.nce when the
top-level parent of rid commits.

202

the specified bytes, by transactions which have not yet committed, should be visible to this read

operation. If the buffer is located on a remote node, the data will be automatically copied across the

network, using the special kernel Copy primitive. Any bytes which have never been explicitly written

will be read as zeros. APSRead returns the number of (non-zero) bytes which were actually read.

APSIsZero can be used to check whether the specified range of bytes, in the given atomic page set,

are all zero. If so, it returns TRUE; otherwise FALSE. The specified transaction ID serves the same

purpose as in the case of APSRead,

APSWrite writes nbytes bytes from the given buffer, into atomic page set psid, beginning at byte

location. The number of bytes actually written is returned. The specified transaction ID (tid)

determines when the effects of APSWrite will be permanently committed, as well as the scope of their

visibility in the interim. As with APSRead, the buffer can be located on either the local or a remote

node. Any necessary cross-network data copying will be handled automatically, using the special

kernel Copy primitive. APSZero provides a means for efficiently "zeroing" a range of bytes within an

atomic page set. The specified transaction ID serves the same purpose as in the case of APSWrite.

When complete pages are zeroed, they are removed from the page set (deallocated). APSZero is

especially useful for "truncating the tails" of atomic page sets, which is accomplished by zeroing the

highest numbered (non-zero) bytes. The number of bytes actually zeroed (i.e. the number of

previously non-zero bytes which have now been zeroed) is returned.

APSMove can be used to "move" the specified range of bytes within atomic page set psid, to the

new location specified by to-location. The transaction ID (tid) serves the same purpose as in the case

of APSWrite and APSZero. Overlapping source and destination ranges are permitted, with the result

being equivalent to first zeroing all of the bytes in the source and destination regions, followed by

rewriting the original source bytes into their destination locations. Among other things, APSMove can

be used for "truncating the heads" of atomic page sets, by specifying location zero as the

destination, and moving all of the tail bytes forward.

The APSPrepareCommit primitive is used in phase one of the two phase transaction commit

sequence for atomic page sets. All modifications to atomic page sets on this logical disk, which were

made in the course of the specified transaction (tid), are carefully recorded in a special "Commit List"

on secondary memory. These modifications can no longer be lost in the event of a crash.

Transaction tid is flagged (on the disk) as "prepared to commit". The invoker is then informed

(through the return value, val), of the Atomic Page Set Subsystem's readiness to commit the

transaction. Following successful completion of the APSPrepareCommit primitive, the only allowed

operation involving transaction tid is APSCommit or APSAbort. Note that APSPrepareCoiI Mlt need

2f03

not be invoked in the case of a nested elementary subtransaction (it has no effect). Such a

subtransaction does not actually modify the permanent contents of the atomic page sets, until its top

level parent transaction commits. Hence, a two phase commit sequence is unnecessary, since any

failure will cause the parent transaction, as well as this "committed" subtransaction, to be aborted.

APSCommit is used in phase two of the two phase transaction commit sequence. It is also the only

primitive required to "commit" a nested elementary subtransaction. In this latter case, APSCommit

does not actually modify the permanent contents of the atomic page sets. Instead, it simply makes all

of the modifications which were made in the course of the specified transaction (rid) visible to the

parent of fid. When APSCommit is applied to a top level elementary transaction, or to any compound

transaction, the specified transaction (tid) must already have been "prepared" (with

APSPrepareCommit), in phase one of the commit sequence. In this case APSCommit is the second

(final) phase of the commit sequence, and it is responsible for carefully updating the "permanent"

contents of the atomic page sets, based on the modification information contained in the Commit List.

APSCommit first flags (on the disk) transaction rid as "committed". It then returns the result (val) to

the invoker, allowing the invoker to continue its execution while the Atomic Page Set Subsystem

makes the required modifications to the atomic page sets.

The APSAbort primitive is used to abort the specified transaction (tid). This involves removing

(undoing) all modifications made within transaction tid, or any of its nested subtransactions (except

already committed compound subtransactions). Note that transactions which have been "prepared",

but not yet committed, can still be aborted. In that case the aborted modifications must be carefully

removed from the Commit List.

The APSSatus primitive returns (in statusbuffer) information about the specified atomic page set

(psid). This includes its virtual size (maximum non-zero byte location), physical size (actual number of

allocated bytes), and an indication of which uncommitted transactions, if any, are stoil operating on

this page set. Note that since no transaction ID is specified with the APSStatu , primitive, the sizes

reported are those of the current, "permanent" version of the atomic page set.

APSRestart initializes the Atomic Page Set Subsystem, for the logical disk specified by disk-aid. It

checks to ensure that the main secondary memory data structures (the Atomic Page Set Permanent

and Commit B-Trees, discussed below) are accessible and consistent, by using the DiFRecoverDual

primitive of the Logical Disk Subsystem (see Section 6.7.3). A side effect of using DKRecoverDual is

that all of the pages in the Permanent and Commit B-Trees will be marked as allocated. APSRestart

then marks (as allocated) all of the data pages belonging to any atomic page sets rtored on the disk,

204

and also marks all of the data pages associated with the Commit List (see the discussion of DKMark in

Section 6.7.3).45Finally, APSRestart completes the processing of any transaction which is in the

Commit List, and flagged as "committed". This involves carefully updating the permanent contents of

the atomic page sets, based on the modification information contained in the Commit List.
46APSRestart should only be invoked when the Atomic Page Set Subsystem is first created by the

Page Set Restart/Reconfiguration Subsystem (see Section 6.7.4 below), i.e. when the associated

logical disk is first added to the system. The optional parameter (fast) can be used to indicate that a

fast restart is in progress, and hence all of the consistency checks and page allocation marking can

be skipped. However, any remaining commit processing must still be performed, even in the case of a

fast restart. For more details concerning restart and garbage collection activities, see Section 6.7.4.

6.7.2.1 Components of the Atomic Page Set Subsystem

Each instance of the Atomic Page Set Subsystem kernel arobject (one per logical disk) has the

general structure illustrated in Figure 6-25. It consists of five main components: a single Manager

process, three B-Tree Buffers, and a Data Page Buffer. The Manager handles all of the Atomic Page

Set primitives, discussed above. It uses the facilities of the associated Logical Disk Subsystem, in

order to store, access, and manipulate the page sets recorded on its corresponding logical disk.

The four buffers in Figure 6-25 are primarily shown for clarity of exposition. In practice (as

explained in Section 6.7.1), each instance of the Atomic Page Set Subsystem would not have its own,

separate buffer areas. Instead, it would allocate buffer pages from a common Kernel Page Buffer

Pool, and maintain "hints" lists concerning those pages which it most recently returned to the pool.

For our purposes, however, it is more convenient (and not entirely inaccurate) to regard each

instance of the Atomic Page Set Subsystem as having its own buffer areas.

The Permanent B-Tree Buffer holds the most recently accessed nodes (pages) of the Atomic Page

Set Permanent B-Tree, for this logical disk. The Permanent B-Tree is tile data structure used to

record the sets of logical disk pages, comprising the current, permanent versions of the atomic page

sets, stored on this disk. The logical structure of the Permanent B-Tree is identical to that of the

Standard Page Set B-Tree, as discussed at length in Section 6.7.1, and illustrated in Figure 6-24.

Refer to that Section for details. However, updating the Permanent B-Tree must be done more

45At this point, since PSRestart is assumed to have been invoked prior to APSFtestart, all of the naqe allocation information
for tMe logical disk has been reconstructed. Hence, it is now safe to allocate new logical disk pages, as required, without
danger of reallocating pages that are already in use.

4 6Note that commit processing can be done "in the background" (after returning the result val to the invoker), just is in the
case of APSCommit.

205

Accept
APS Reply

Operat ion Result
Atomic Page Set Atomic Page Set

Permanent Commit

B-Tree Buffer B-Tree Buffer

Atomic

Page Set
Manager

Atomic Page Set Atomic Page Set

Request Modification Data Page
Logical Disk Reply 5-Tree Buf'fer B-Tree Buffer

(OK) Result

Operation

Figure 6-25: Components of the Atomic Page Set Subsystem

carefully than in the case of the Standard Page Set B-Tree, since in this case the update must be

done atomically with respect to system failures. The technique for carefully (atomically) updating the

Permanent B-Tree is outlined briefly in the discussion of transaction commit handling, below. As with

the Standard Page Set B-Tree, a pointer to the root node of the Permanent B-tree (its /dpnum) is

stored in page zero of the logical disk, so that the Atomic Page Set Subsystem can always find it.

The Modification B-Tree Buffer holds the most recently accessed pages of the Atomic Page Set

Modification B-Tree. The Modification B-Tree is a temporary data structure, which contains the list of

modifications that have been made to atomic page sets, in the course of the currently active,

uncommitted transactions. Although the modification list is usually expected to be quite short,

storing it as a B-tree will allow it to grow arbitrarily large, when needed. The general structure of the

Modification B-Tree is similar to that of the Permanent B-Tree and the Standard Page Set B- rree (see

Figure 6-24). However, the nodes of the tree are stored in normal (rather than dual) pages, since this

is a temporary data structure that will be "thrown away" automatically following a crash. The

structure of a leaf node of the Modification B-Tree, along with its associated data pages, is illustrated

in Figure 6-26.

The Modification List (B-Tree) is ordered by (tid, psid, pnum), and allows the mapping from these

triples to the associated page modifications, to be performed very quickly. Page mcdifications are

represented by a Data Page, containing the new values for the modified bytes within the page, and a

Mask Page, which indicates which bytes have been modified. Modified bytes are indicated by a

206

leaf Node

Header

Mask na ta

Page Page

tid psid Ipnum iOdnrum tdpnum

Figure 6-26: Atomic Page Set Modification List

corresponding Mask Page byte with hexadecimal value FF. Unmodified bytes have value zero in both

the Data Page and the Mask Page.47 1f the entire Data Page has been modified, then the Mask Page

can be omitted (mask Idpnum = 0). If the entire Data Page has been zeroed, then the Data Page can

also be omitted (data Idpnum = 0). One other special case is that of atomic page sets that have been

destroyed. In this case the Modification List contains only an entry for page zero oi the destroyed

page set, and mask Idpnum = data Idpnum = DESTROYED. Use of the Modification List when

accessing and modifying the atomic page sets, and when committing or aborting transactions, is

discussed below in Sections 6.7.2.2 and 6.7.2.3.

Another major data structure of the Atomic Page Set Subsystem, illustrated earlier in Figure 6-25, is

the Commit B-Tree Buffer. It holds the most recently accessed pages of the Atomic Page Set Commit

B-Tree, which is the data structure used to record the Commit List (the list of atomic page set

modifications, made by transactions which are in the process of being committed). As with the

Modification List, the Commit List is usually expected to be quite short. However, storing it as a B-tree

will allow it to grow arbitrarily large, when needed. The structure of the Commit B Tree .3 almost

4 7
Although a bit map could be used in place of the current (byte map) Mask Page. the pane oriented nature of the ior ijtl

disk on which the maps are stored makes the current design more convenient. in iddit i ... i-ii -utahans Ire iskilly
more convenient and efficient than bit manioulations, in most current programming Ianruai , an., J ;rp architecthoo

207

identical to that of the Modification B-Tree, except that the nodes of the tree are stored in dual (rather

than normal) pages. See Figure 6-26 above for an illustration of the structure of a leaf node of the

Commit B-Tree. Updating the Commit B-Tree must be done carefully (i.e. atomically with respect to

system failures), just as in the case of updating the Permanent B-Tree. This is to avoid any possible

corruption or accidental loss of transactions, after they have been flagged as "prepared to commit".

A pointer to the root node of the Commit B-Tree is stored in page zero of the logical disk, so that the

Atomic Page Set Subsystem can always find it at restart time.

The final major component of the Atomic Page Set Subsystem is the Data Page Buffer. Unlike the

Standard Page Set Subsystem, the Atomic Page Set Subsystem must often manipulate subparts (byte

ranges) within data pages. The relevant pages are held in the Data Page Buffer while they are being

operated on. Similarly, modification Mask Pages are constructed, accessed, and modified by the

Atomic Page Set Subsystem, using the Data Page Buffer for temporary storage.

6.7.2.2 Accessing and Modifying Atomic Page Sets

Any access or modification to an Atomic Page Set must be done in the context of a transaction,

specified by tid. All modifications made in the course of a particular transaction are first recorded

(temporarily) in the Modification List. For example, assume that the following invocation has been

made:
nbw = APSWrite(tid, psid, location, nbytes, buffer)

Then the Modification List will be searched for (tid, psid, pnum), where pnum is the page containing

the bytes specified by location and nbytes.481f not found, a new entry with that key will be inserted in

the list, with pointers to newly allocated (and completely zeroed) Mask and Data Pages. In either

case, the specified bytes of the Data Page are set to the contents of buffer, and the corresponding

bytes of the Mask Page are "turned on" (set to hexadecimal FF).

Accocing the current contents of an atomic page set is a little more involved. For examp!e, assume

that the following invocation has been made:

nbr = APSRead(tid, psid, location, nbytes, buffer)

Then tid must be taken into account when determining which modifications (if any) have been made

to the specified bytes, and should be visible within this transaction. The Modification List is first

searched for (tid, psid, pnum), where pnum is the page containing the bytes specified by location and

nbytes. The Modification List is then successively searched for the ancestor transactions of rid, to

see if any of them have modified the page in question. As relevant entries are found, a Compound

480To simplify our examples, we will omit the details concerning the handling of multiple priyjes. and the cros.,ruj of page

boundaries.

208

Mask and Compound Data Page are constructed, such that the modifications made in

subtransactions take precedence over their ancestors. This can be easily accomplished (at least

conceptually) using bitwise logical operations on entire Mask and Data Pages. For example, to merge

another (ancestor) Data Page (Data) and Mask Page (Mask) into the Compound Data and Mask Pages

that have been constructed thus far, the following equations can be used:
CompoundData = CompoundData OR (Data AND (NOT CompoundMask))
CompoundMask = CompoundMask OR Mask

If, at any point in the construction of the Compound Data and Compound Mask Pages, it is found

that the entire page has been modified, then there is no need to search any further. The requested

bytes can be obtained dir.ctly from the Compound Data Page, and returned in buffer. Otherwise, the

modifications indicted by the Compound Mask and Compound Data Pages (if any) must be applied

(conceptually) to the corresponding page in the Atomic Page Set Permanent B-Tree. This is done

using the same formula as shown above, where in this case "Data" is the Permanent Data Page. The
requested bytes can then be obtain directly from the Compound Data Page (as before), and returned

in buffer.

Note that, because of the buffering provided in the Atomic Page Set Subsystem, most manipulations

of the Modification Lizt, including Mask and Data Page manipulations, will not require actual disk

operations. Furthermore, page-at-a-time access to atomic page sets will usually be much more

efficient than manipulating a small number of bytes with each operation, and it can be made even

more efficient by treating it as a special case.

6.7.2.3 Transaction Commit and Abort Handling

All modifications to atomic page sets are first made on a temporary basis, by recording them in the

Modification List, as outlined above. A modification will only become "permanent" after its

associated transaction (rid) has been committed. In the case of a nested elementary subtransaction,

a modification can only become permanent after the top level ancestor transaction commits. This is

because any failure (or abort) of an ancestor transaction, will cause the modifications made in any

elementary subtransactions to also be aborted. When a nested elementary subtransaction (tid)

commits, all .of its modifications become visible to its parent transaction (parent-tid). 'This is

accomplished by simply "renaming" all of the rid entries in the Modification List, to have transaction

ID parent-rid. In case of conflicts, the modifications made in tid take precedence over the

modifications made in parent-tid. This is done by constructinq a Compound Mask and Compound

Data Page, using the same equations as discussed above.

Committing a top level elementary transaction. or any compound transaction (whethr nested or

209

not) causes all of its modifications to be permanently made to the affected atomic page sets. These

modifications must be made very carefully, so as to preserve the atomic properties of the page sets

(failure atomicity and durability). Since a transaction may span more than one logical disk, and more

than one computing node, a two phase commit sequence is needed to coordinate the atomic updates

of the various Atomic Page Set Subsystems, and to make them all occur as a single atomic update. In

the first phase of the transaction commit sequence, the APSPrepareComrmit primitive is invoked on

each of the Atomic Page Set Subsystems involved in transaction rid. In response to

APSPrepareCommit, each Atomic Page Set Subsystem must carefully record, in its Commit List, all of

the modifications for transaction rid, so that they can no longer be lost in the event of a crash. This

basically involves moving all of the entries with transaction ID tid, from the Modification List to the

Commit List. However, to avoid inconsistencies in the Commit List, and the attendant loss of

previously committed transactions, any updates to the Commit List must be done atomically with

respect to system failures. The technique for atomically updating the Commit List B-tree is the same

as that outlined below, for the case of the Atomic Page Set Permanent B-Tree.

After all of the Atomic Page Set Subsystems have indicated that they are prepared to commit

transaction tid, the second phase of the commit sequence can begin. Phase two is signalled to each

of the Atomic Page Set Subsystems by invoking the APSCornmit primitive. In response to

APSCommit, each subsystem simply flags transaction tid as committed, and replies that it has

completed the requet. This allows the invoker to continue its execution, while the Atomic Page Set

Subsystem actually carries out the required commit processing. Flagging a transaction as committed

is accomplished by writing its transaction ID (tid) into the header portion of the root node of the

Commit List B-Tree. Note that since the nodes of the B-tree are stored as dual logical disk pages,

updating the root node on disk will be an atomic operation.

Once a transaction has been flagged as committed, an Atomic Page Set Subsystem will not accept

any other requests for operations on atomic page sets, until it has completed the necessary commit

processing. Committing transaction tid basically requires carefully (atomically) updating the

"permanent" contents of the atomic page sets (as stored-in the Atomic Page Set Permanent B-Tree),

based on the modification information contained in the Commit List. The possible types of

modifications are: (1) the insertion of new pages (including entirely new page sets); (2) the

modification of existing pages; (3) the removal (zeroing) of existing pages: and (4) the removal

(destruction) of entire page sets. The key to making all of the modifications for transaction tiJ occur

atomically, is to never actually modify any existing node or data pages in the Permanent B.Tree

(except one). Instead new pages, reflecting the reqL.ired modifications, are constructed as

necessary. Then, all of the modifications can be made permanent at the same time, by atomically

210

updating a single Permanent B-tree node: the node at the root of the (minimum) subtree which

encompasses all of the modifications. For more details concerning this technique, see [Mitchell 82],

where the XDFS approach to atomically updating a file system B-tree is discussed.

After the Permanent B-Tree has been atomically updated, the modifications for transaction tid must

be carefully removed from the Commit List, and tid erased from the header of the Commit List root

node. This updating of the Commit List can all be done atomically, using the same technique as

outlined above for the Permanent B-Tree. Note, however, that there is a period of time between the

atomic updating of the Permanent B-Tree and the atomic updating of the Commit List, during which a

system failure could occur. If a failure occurs during that time, the Atomic Page Set Subsystem will

automatically (upon system restart) attempt to apply the modifications for transaction 'id once again.

This will not cause any problems, however, since all of the possible modifications to the Permanent

B-Tree, as listed earlier, are idempotent (i.e. they can be repeated multiple times without changing the

final result). When at last the Atomic Page Set Subsystem is able to complete the commit processing

for transaction tid, it can then return to accepting new requests for operations on atomic page sets.

Besides committing, the other possible outcome for a transaction is that it aborts. A transaction

(tid) can be aborted at any time, prior to being committed with APSCommit. The Atomic Page Set

Subsystem is notified of transaction aborts by means of the APSAbort primitive. When a transaction is

aborted, all of the modifications made within it, or any of its nested subtransactions (except already

committed compound subtransactions), must be removed (undone). This is accomplished by

removing all entries for transaction rid, and all of its subtransactions, from both the Modification List

and the Commit List. Note that if entries are to be removed from the Commit List, it must be done

atomically, using the standard technique outlined above.

6.7.3 Logical Disk Subsystem

Each physical disk that is being used by the ArchOS system has a corresponding Logical Disk

Subsyctem Kernel Arobject. These Arobjects are created and destroyed as disks are mounted and

dismounted (see Restart/Reconfiguration Subsystem, Section 6.7.4). A physical disk can have at

most one ArchOS partition on it, and only that portion of the disk will be used by ArchOS. We refer to

the ArchOS partition of a disk as a logical disk. A logical disk can simply be viewed as a sequence of

pages. where a page is (currently) defined to cle 2K bytes in size. Pages on the di.-k are numbered
from 0 tO N-1, where N is the total number of pages on the logical disK. A logical dis, hos a unique

identifier permanently associated with it, regardless of where the disk is currently mounted.

Each instance of the Logical Disk Subsystem is responsible for managing the allocatiorn of pa es oin

211

its corresponding logical disk. It also keeps track of the bad (unusable) pages on the disk, so that

they are not made available for allocation and later use. As much as possible, the Logical Disk

Subsystem "optimizes" access to the physical disk, by allocating, reading, and writing multiple pages

at a time, and ordering operations so as to minimize disk heau movement. It also provides a degree of

"network transparency", by automatically buffering and transferring data between the local and

remote machines.

In addition to NORMAL (single) pages, the Logical Disk Subsystem also supports the concept of

DUAL pages. A DUAL page is written more carefully than a NORMAL page, so that it a crash occurs

while writing a DUAL page, its original contents can still be recovered. In this way, a simple, basic

form of failure atomicity is provided. As the name suggests, each DUAL page is implemented using

two single pages. DUAL pages are used for saving important data structures, and as a building block

for implementing more complex atomic operations.

The Logical Disk Subsystem provides the following set of primitives:

pagelist = DKAlIocate(npages, type [, follows])
val = DKFree(pagelist)

npr = DKRead(pagelist, buffer)
npw = DKWrite(pagelist, buffer)

val = DKSynco
val = DKStatus(statusbuffer)

val = DKRestart(dev-name)
val = DKRecoverDual(pagelist)

val = DKUnrnark0
val = DKMark(pagelist)
val = DKGoodO
val = DKBad(pagelist)

PAGELIST pagelist List of 32-bit logical dirk page numbers, where the first 8 bits of a page number
are used for various flags, and the remaining 24 bits are converted to tre cylinder,
track, and sector numbers of the physical disk. The first flag bit indicates whether
the page is DUAL or NORMAL.

BOOLEAN val TRUE if the specified operation is done successfully: otherwise FALSE.

INT npr The actual number of pages read.

212

INT npw The actual number of pages written.

INT npages The number of pages to be allocated.

PAGETYPE type The type of pages to be allocated: NORMAL or DUAL.

PAGEID follows Logical disk page number, following which the new pages are to be allocated
(physically as close as possible).

BUFFER *buffer The buffer address in the kernel address space of either the local or remote node.

DKSTATUSBUFFER "statusbuffer
The buffer address for returning status information (can be either a local or
remote kernel address).

DEVNAME dev-name
The logical device name.

The DKAIocate primitive allows a number of pages to be allocated at a time, and it returns a list of

the allocated logical disk page numbers. An attempt is made to allocate pages which are physically

close 'together on disk. The pages can be of type NORMAL or DUAL, and a preferred location on disk

(near an existing page) can be specified. The DKFree primitive deallocates the specified list of pages.

DKRead reads a list of pages into the specified kernel buffer, and returns the count of pages

actually read. Similarly, DKWrite writes a list of pages from the specified kernel buffer. and returns the

count of pages actually written. When the buffer is in a remote kernel, DKRead and DKWrite

automatically handle the cross node copying of data.

The DKSync primitive ensures that any buffered information within the Logical Disk Subsystem is

consistent (synchronized) with the version on disk. The DKStatus primitive provides information

about dick utilization, frequency of access, freq uency of errors. number of bad blocks, and so on. It

can be used, for example, by the Arobject/Process Management Subsystem, to determine the

placement of process address space paging areas.

DKRestart is used only when the system is restarted. It initializes the disk hardware and any internal

data structures. The DKRecoverDual primitive recovers the given list of DUAL pages, by ensurin that

the two copies of each DUAL page are consistent (see (Sturgis 80] for detais) This s by

various subsystems when recovering their data structures after a crash.

The OKUnmark and DKItark primitives are provided to help in garbage collection. First, D,,',,

213

is used to flag all of the pages on the disk (except bad pages) as free. Then, DKMark is used

(repeatedly) to flag the specified pages as allocated. Similarly, DKGood and DKBad are used for

managing the bad pages (unusable pages) on the disk. DKGood flags all of the pages on the disk as

good. Then, DKBad is used to flag pages that have been determined to be bad.

6.7.3.1 pWponents of the Logical Disk Subsystem

The Logical Disk Subsystem consists of a single Manager process, and three main data structures,

which are shown in Figure 6-27. The Logical Disk Manager (LDM) process accepts all operations for

the subsystem, executes them, and returns the results. The three data structures it uses are:

(1)Sorted Page List, (2)Data Buffer, and (3)Page Allocation Map buffer.

Accept
OK Reply

Operations Results

(pageD, npages, buffer)

Logical

Disk
Manager . Page Page

I j

Page

i/0 Contro?
I/O Walt

Sorted Page Data Buffer Page Allocation
List Map Buffer

Phys ical
Disk

Figure 6-27: Components of the Logical Disk Subsystem

The purpose of the Sorted Page List is to order the disk pages to be read or written, so a3 to reduce

disk head movement, and improve disk performance. Each entry of the Soi .ed Page List consists of

three values: the logical page ID of the starting page, the number of pages (npages) to be read or

written in one disk operation, and the location within the kernel buffer to be used for the operation.

The Logical Disk Subsystem allows multiple page read and write operations. The pagelist provided is

clustered (if possible) and then entered in the Sorted Page List.

The Data Buffer provided is used only for remote operations (invoked from other no(!e'; in the

214

distributed system). For example, data read from the disk (for a remote operation) is first placed in the

Data Buffer, and then transferred to the destination buffer on the remote node, by using the system

copy facility. A "double buffering" technique is used, so that the disk transfer and copy operations

can proceed in parallel.

The Page Allocation Map Buffer is used to buffer some of the pages of the Page Allocation Map.

Whenever the Page Allocation Map has to be read or modified (such as in DKAIIocate, DKFree,

DKMark, and DKUnmark), the relevant pages of the map are first read into the buffer (unless they are

already buffered). A detailed description of the Page Allocation Map and its handling is provided in

Section 6.7.3.3.

6.7.3.2 Disk Layout

A logical disk is laid out as a sequence of pages, which are numbered from 0 to N-1 where N is the

total number of pages on the logical disk. The logical page number specified in the logical disk

operations consists of the concatenation of a flags byte, with a number from 0 to N-i. A page can

either be NORMAL or DUAL. A NORMAL page is a single disk page, referred by a logical page

number. A DUAL page consists of two pages, where the second page -is located a fixed offset from

the first (primary) page. The DUAL page is referred to by the logical page number of the primary

page. The first bit in the flags byte (of the logical page number) indicates whether a page is NORMAL

or DUAL. The two physical pages of a DUAL page have a gap of one page (pages are not adjacent),

to reduce the probability of both pages being damaged by a single disk fault, and to ensure

reasonably efficient sequential access.

Logical page 0 of the disk serves a special function. It contains information about the logical disk,

and pointers to all important data structures saved on the disk. Thus, it saves information about the

disk drive characteristics, the logical disk name, the logical disk size, and pointers to the Page

Ailocation Map, the Bad Page Table, the File Systeri Directory, aod so on. For reliabdity, page 0 is a

DUAL page.

6.7.3.3 Disk Page Allocation

The Page Allocation Map is a bit map, which has one bit corresponding to each page on the lcgical

disk. If a disk page has been allocated, its bit in the allocation map is set. The Page Allocation Map

itself is saved ncar the middle of the dis!,., to provide efficient access All pages of the ,flocation map

are DUAL. and laid out as shown in Figure 6-28.49

49 f we haj- a 500 M8 logical disk. it would coni7in 250K pages u sizf. 2K. The n of IIIt ,1!IcCltfr1 l I . ,', ,lid ,',c

bits, or 16 DUAL pages (32 Iogic:0 disk pages) ripifoxinitely

215

Alocation Allocation Allocation Allocation

Map Page 0 Map Page I DUAL of DUAI of Map Page 2 Map Page 3

Allocation Allocation
Map Page 0 Map Page

(Map for (Map for (Map for (Map for

pages 0 pages 16K pages 32K pages 48K

to 16K-I) to 32K-1) to 48K-1) to 64K-I)

Figure 6-28: Layout of the Page Allocation Map

The page allocation algorithm used is fairly simple. It attempts to pack the allocated pages, starting

at page 1 of the disk, and continuing through to page N-i. If the last page allocated was page i, the

following allocation will start from page i+ 1 (unless a preferred allocation page is specified). The

advantage of this scheme is that allocation and deallocation are very efficient. For allocation, the

page of the allocation bitmap containing bit i + 1 is likely to already be buffered, since that page was

probably used recently (for the previous allocation operation). Hence, no disk reads will usually be

required for allocation. For deallocation, the appropriate allocation map page can be easily

determined, then read in (if necessary), and modified. Note that with this allocation scheme,

successively allocated pages will tend to be located close together on disk, thus improving access

efficiency.50

6.7.3.4 Bad Page Handling

One of the functions of logical disk management is to prevent the use of bad pages on the disk. A

list, called the Bad Page List, is maintained near the end of the disk, and consists of the logical page

numbers of all known, unusable (bad) pages. 51 The Bad Page List is stored as DUAL pages. When

the Page Alocation Map is initialized (using DKUnnark), all the bad poegs are mark. a .c.. ., to

provent further usage of these pages.

The Bad Page List is usually constructed when a new disk is initialized, and is not expected to

soThis allccation scheme vil be able to cluster multiple page allocations reasonably .lell when the disk s new. b,#t the disk

NIl slowly become more and nre fragmented vith continued use. some improwmeniS could tra mide. to reduce tr - imo(unt

af 'ro, ymentation, it is found to have a signitcart ;mr)ct on performance

51The entries in the Aid Pir e List are sorted .vhen the list is first constructed. but new ,-nlWiS ire snil)v 7dei .0 hit ,'r;.1 cf

!he ;i-t as found. The Bad P.,Rje List Is ex-,.ctd to require o1ly . few disk foyn' Itir '1or~rr :f I') of l,., :, .

Cacti)t f 50 M rlisk ,, D.d. the Bad Ilncl Ll ,ould tave 2 A' entries. ntt ,>.ch . it I t , -, .

pages (10 disx pages) are rul',firod to -ave ti? -fniri i.t

216

change very much after that. When the Bad Page List is constructed, the Data Buffer can be used for

buffering it. The List will be constructed by a special utility, which first calls DKGood to remove the

old Bad Page List (if it exists). After that, the entire disk is scanned to find any bad pages. This is

done by writing each page and then reading it back. For each bad page found, its logical page ID is

entered in the Bad Page List (with DKBad). Once the system is in operation, if a bad page is

discovered by some subsystem, it can call DKBad to enter the page in the Bad Page List.

6.7.4 Restart/Reconfigu ration Subsystem

The Page Set Restart/Reconfiguration Subsystem (PSR Subsystem) performs several functions

related to the restart of a computation node following a crash, as well as the mounting and

unmounting of logical disks. A single instance of this subsystem resides at each node in the system.

The PSR subsystem "bootstraps" the entire Page Set Subsystem at restart time. After a crash, the

Restart/Reconfiguration Subsystem is restarted automatically, and is responsible for constructing the

entire Page Set Subsystem. The kernel (on a node) maintains a list of device addresses which it

probes, to determine the logical disks on its own computing node. The PSR Subsystem sets up the

atomic and standard page set arobjects, as well as the logical device arobject, for each logical disk

found on the node.

In addition to restarting the Page Set Subsystem, the PSR Subsystem adds and removes logical

disks dynamically (while the system is running) as necessary. When a new logical disk is added, the

various Page Set Subsystem aroblects (Standard Page Set, Atomic Page Set, and Logical Disk) have

to be created for it. When a disk is removed, the corresponding arobiects have to be killed. Some

support is provided for the clean unmounting of disks. It is possible to quieten activity on a disk (by

allowing old activity to complete, but refusing new activity), prior to disk removal.

The PSR Subsystem maintains a global Mount Table, which indicates the location (node) of all the

logical disks in the entire distributed system, and the Page Set Subsystem Aroblects asscciated with

each logical disk. Each instance of the PSR Subsystem maintains a copy of !he Mount Tjble, and the

peers co-operate in keeping up-to-date 'ersions of the table. The Mount Table at a node is glcbally

accessible to other kernel level subsystems on that node. Along with the global Mount Table, a local

Unmount Table is also maintained The Unmount Table lists the logical disks accessible to the PSR

Subsystem, but not globally visible to other subsystems on its node, or to other nodes in the

distributed system.

The PSR Subsystem performs two other useful functions. Firstly, it co.ordinato- garbage roll.:.ction

for the entire Page Set Subsystem (on u node). Secondly, it checks any given dJik !or bad (unul)

217

pages. and enters them in a Bad Page List (refer Section 6.7.3). Each of these two functions can be

performed at restart, as well as when the system is running.

Quiet

PSRQuiet PSRUnmount

/ PSRUnmount xI PSRRemoveOi sk

u nt-Id Unimounted .0 moe

PSRMount PSRTnltOevice

Figure 6-29: State Diagram for Logical Disks

The PSR Subsystem allows a logical disk to be in one of four possible states: Mounted, Unmounted,

Quiet, or Removed (refer Figure 6-29). In the Mounted state, the logical disk has an entry in the Mount

Table, and is globally visible on its own node, as well as throughout the system. Al types of disk

operations (except disk checking and garbage collection), such as paging, reading and writing, are

permitted in this state. The Quiet state is very similar to the Mounted state in having an entry in the

Mount Table, and being globally visible. The only difference is that this state represents an attempt to

quiet down system activity prior to disk removal, and hence new activity is not allowed. In the

Unmounteo state, the logical disk has an entry oniy in the Unmount Tdbi, ilid 1, '1Zise within the

PSR Subsystem. The main purpose of this state is to allcw disk checking, garb-g,: collection, and

other disk maintenance to be performed, while the rest of the system is still up and running. The

Removed state corresponds to the physical removal of the disk from the computer system.

218

val =PS RRest art(device-Iist [, options])
diskid = PSRlnitDevice(dev-name [, inittlags])
val = PSRRernoveDisk(diskid)
val = PSRMount(diskid)
val = PSRUnmaunt(diskid)
val = PSROuiet(diskid)

vai = PSRCheckDisk(diskid)
val = PS RGa rbage Collect (diskid)

val = PSRlnsertMount(diskid, node, disk-aid, ps-aid, aps-aid, mtf lags)
val = PSRRemoveMount(diskid)
val = PSRRequestMount(mount-table)

BOOLEAN val TRUE if the specified operation is done successfully; otherwise FALSE.

DISKID diskid The Logical Disk ID of the disk volume being operated on.

DEVLIST device-list

.ThE of logical device names corresponding to logical dis'ks n the system.

PSROPTIONS options
A set of boolean flags which can be specified as restart options for operations to
be carried out in the restart sequence. The flags provided are: GARBAGE-
COLLECT, and CHECKDISK

OJEVNAME dev-name
The logical device name.

PSRINITFLAGS initflags
A set of boolean flags which can be specified when a logical rfisk is initialized.
Currently, two flags are provided: READ-ONLY, and SELF-CONTAINED.

NODENA.ME node The ID of the node on which the disk is mounted.

AID disk-aid The arobject ID for the Logical Disk Subsystem Arobject corresponding to the
disk cdiskid.

AID ps-aid The arobject ID for the Standard Page Set Subsystem Arobject Corresponding to
the disk diskid.

A!D aps-aid The aroblect 1D for the Atomic P3ge Set Subsistemn Arobject correspun(!!n(1 to
the disk diskid.

PSRMIJNTFLAGS mrtflags
A se!t of boolean tlajS asz;ociatsc-d with each entry in the t.1unt T ~Tl Ti
pruvidud are, QUIET. READ-COii1L e,. SELF-CON rAIINED.

219

MOUNTBUFFER "mount-table
The buffer used for transferring the contents of the mount table between different
nodes in the system.

The PSRRestart primitive restarts the Page Set Subsystem on a given node, following a node crash.

It is invoked by a kernel process responsible for bringing up the entire kernel on that node. The list of

devices corresponding to all logical disks on the node is determined by the kernel process, and

supplied as a PSRPoslart parameter. For each logical disk on the node, the PSRRestart primitive

creates and restarts three page set subsystem arobJects (standard page set, atomic page set, and

logical disk). In addition, if the GARBAGE-COLLECT and/or CHECKDISK options are specified, then

garbage collection and/or disk checking (for bad pages) are performed as part of the page set restart

sequence.

The PSRInitDevice primitive adds a new logical disk to the node. The state of the logical disk makes

a trasition from the Removed state to the Unmounted state. The system device name (dev-name) for

the logical disk is supplied, and itsilogical ID is found (from page 0 of the disk) and returned. The

Standard Page Set, Atomic Page Set, and Logical Disk arobjects are created for the newly added

disk. Cptional f!ags (READ-ONLY, and SELF-CONTAINED) can be specified as necessary, for

restricting the type of disk access permitted. The READ-ONLY flag specifies that the entire disk is

read-only, and its contents cannot be modified. The SELF-CONTAINED flag specifies that all files

saved on that disk must have the directory entries, as well as the file contents (page sets) saved on

that disk. 52 The PSRRemoveDik primitive removes a specified unmounted logical disk from the

system. The three page set arobjects for the logical disk are destroyed.

The PSRMount primitive mounts the specified unmounted logical disk, and makes it globally

accescble. All nodes in the distributed system ar informed about the newly mounted disk. The

PSRU'7r,cunt primitive unmounts the specified logical disk, from the Mounte or Quiet state. In either

case, *he result of a PSRUnmount is seen by the rest of the system as a disk crash, where no lurther

operations are permitted, and ongoing operations cannot oe completed. 53 It is expected, however,

that if the disk was quiet prior to unmounting, there would be very little (if any) ongoing activit7 at this

time. The PSRQuiet primitive flags a mounted logical disk as being in a special quiet state, in which

52.1 3 dsk is sell contained, it can be e-isily moved from one AtchOS sysC'ci ,r(J .i iiaizcd ('n ._wcl her

9"3 P',.rfi,"ouni can te mi erni ented ;-5 a he je.riction of ttih 'fir e na' , A ;]rcbi-C! (..:i'L w , - - ';
r
', . -'ct

r 'j ". }p.I ,J,''; f"llowe'J !1v !he crpe tjon of rC1, page fet iionei#-c? in this . ii requt r . I u.m., .', .h .o .' -i

',' iro ciq ;Ls iii rr itrn error nri, cntions

220

ongoing activity can be continued, but new activity is not allowed. The main prupose of this primitive

is to allow for clean disk unmounting.

The PSRCheckDisk and PSRGarbageCollect primitives are allowed only when the specified logical

disk is in the Unmounted state. The PSRCheckDisk primitive determines the bad pages on the

specified disk (non-destructively), and constructs the Bad Page List. The PSRGarbageCollect

primitive co-ordinates garbage collection for the specified disk, by invoking garbage collection

primitives provided by the standard page set, atomic page set, and logical disk arobjects.

The Mount Table is replicated on all nodes in the distributed system. Three primitives are provided,

vhich are used only by peer Restart/Reconfiguration arobjects on other nodes, for obtaining and

updating information from the Mount Table. The PSRInsertMount primitive is used for adding a new

Mount Table entry, or for modifying an existing entry. The parameters specified are the logical disk ID

(diskid), the ID of the node on which the disk is mounted (node), the IDs of the three Page Set

Subsystem arobjects: logical disk subsystem (disk-aid), standard page set (ps-aid), and atomic page

set (aps-aid), and a set-of flags. The PSRRemoveMount primitive removes the Mount Table entry for

the logical disk. Finally, the PSRRequestMount primitive returns the contents of the entire Mount

Table in the buffer provided. This primitive is primarily invoked by a peer PSR arobject which is

restarting after a crash, and attempting to reconstuct its copy of the system-wide Mount Table.

6.7.4.1 Components of the Restart/Reconfigu ration Subsystem

The PSR Subsystem consists of four types of components: (1)the Mount Table. (2)the Unmount

Table. (3)the PSR Manager process, and (4)one or more PSR Worker processes. Each of these

components is briefly described below, and shown in Figure 6-30.

The Mount Table provides information about the location of all (mounted and ,uiet) logical disks in

!he entire distributed system, and the arcbiects which are responsible for maniging thre (!isk. A

copy of the Mount Table is maintained at each node in the system. The ,Mount Table s loLaiIly vi.r;iole

to all subsystems on a node (and to other nodes), but Is updated only by the PSR Subsystem. Curing

updates, the table is locked, to prevent the access of inconsistent states of the table. Each entry of

the Mount Table contains the following items of information: the ID of the logical (mcurted or quiet

disk, the ID of the node on which it is mounted, the ID of the Logical Disk Subsystem "irchlect for that

disk. the ID of the Standard Puge Set arubiject for that disk, tle ID of the Atoric Paqe T,:t cobject t;;r

that disk and a set of flags (QUIET, READ-ONLY, and SELF-CONTAINED) The QUIET !',]ij is the only

way of spec fying whether a logical disk is in the mournrea state, or in the 7,-utet stat,?. The READ-

ONLY and SELF-CONTAINED flags specify particular types of dfi.;k usJ(e, :.id tius I-c-r ,,cu!scd 1

the previous section.

221

4ount Tahle

Accept6
PSR Reply

Operations Results

PSRMan dger \

Create On Demand
\ ,For CD

Request Reply \
For 4ork With Unmount Table

Peer
Operations "

PSRM untrable
prtoni l

PSR PSR
Worker 0 0 0 Worker

SProcess Process

Pe Su I t logicall DIk ASPS AGS
I Disk I0 AID AID AID

Figure 6-30: Components of the Restart/Reconfiguration Subsystem

The Unmount Table provides information about unmounted logical disks, which can be accessed by

the PSR Subsystem, but are not visible to the rest of the system. It is useful to be able to access disks

in this mode, primarily for maintenance purposes, such as disk checking and garbage collection. The

entrie* i U,, o U, uniit Table are very similar to those in the Mount Table, except that the QD of the

node i3 not required, since the Unrnount Table refers only to its local node. In the flags field. 'he

QUIET flag is not required for this table.

The PSR Manager process is responsible for providing most of the functionality of the PSR

Subsystem. It accepts all PSR operations, and returns the results. It also manages the Mount and the

Unmount tables. The PSR Worker processes serve two functions. The) imIernent PG fCc.,..;;

and PSRGarbageCoilect operations on behalf of the Manager. Since both these nperations can

potentially take a very long time, the PSR Subsystem can still be used for performn -,))ernttOnS (n

other disks concurrently. The other function of the Worker process is to ,ait on bttlflf)f the

222

Manager process, when peer level operations are invoked by the Manager. This prevents deadlocks

arising from multiple, concurrent peer operations.54 One Worker process is always present in the

PSR Subsystem for invoking peer PSR operations (PSRInsertMount, PSRRemoveMount, and

PSRRequestMount). For each PSRcheckDisk or PSRGarbageCollect operation, a new Worker

process is created, and then destroyed when the operation is completed.

6.7.4.2 Restart

The PSR Subsystem performs two related functions when restarting after a node crash. The Mount

Table has to be recreated, and the Page Set Subsystem has to be brought up. The reconstruction of

the Mount Table is quite similar to the reconstruction of the Directory Map Table, when the Directory

Map Subsystem of the File System is restarted (refer Section 6.6.3). The PSR Manager process

invokes a Worker process to obtain the Mount Table (with PSRfequestMount) from one of the other

nodes in the system. In the meantime, it proceeds to initialize all the logical disks on its own node,

which have been found by the kernel restart process. It determines the IDs of the logical disks, and

mounts them.

For each logical disk on the node, its ID is first determined, and an entry~made in the Unmount

Tat.'e. Next, a Logical Disk Subsystem arobject is created for that disk, and then restarted. As a

result of the Disk Subsystem restart, all the logical disk data structures are recovered (page 0 of the

disk. the allocation map, and the bad page list). Once this operation has completed, the standard

page set arobject is created and restarted, so that the Page Set B-tree is recovered correctly. Next,

the atomic page set arobject is created and restarted. This allows all its data structures to be

recovered, and all committed transactions to be completed. The IDs for the three newly created

arcblects are entered in the Unmourt Table. Next, the logical disk is mounted, and entt-red in the

Mourn Table. Once all the logical disks are thus mounted, all the peer PSR arobjects are told to

update their Mount Tables, using the PSRInsertMount primitive.

If the disk checking and garbage coilection opt;ons are specified. then these operatiojns ;, o have

to be performed as part of the restart sequence. Garbage collection is a good idea after a ,estart. so

that all temporary page sets can be flushed.

'Po)1 rt~e -inuiarbty ,lh tr1e .iandfinq rf ltr' Directory ki.i T ibl. in the I-,p .i 0 ,P,t rr. m fn 6- 13

223

6.7.4.3 Garbage Collection and Disk Checking

The PSR Subsystem co-oircinates garbage collection for the Page Set Subsystem. It first calls on

the 3XUnmark primitive, so that the Logical Disk Subsystem marks the entire allocation mnap as being

free. Next. it calls the OSGarojeColect primitive, which specifies all the pages being used by the

Standard Page Set Subsystem. Following that, the APSGarbageColilect primitive is invoked, which

mark~s all the disk pages in use by the Atomic Page Set Subsystem. As a result of this garbage

collection procedure. all temporary page sets. as well as pages not in use by the Page Set Subsystem

are freed f'5

DISK ctleckng Jetermines ali unusatle (bad) pages on the specified disk in a non-destructive

manner Frst *he -DKI (,-prim yve is cailei to remove the old Bad Page List, thereby marking all

idisK pages as '-"ood 'Then, ti c ri paqe Of,~. JisK is read. If there is no checksumn error in reading,

then the page is usabie If wteri -s an error. 'he page is written into, and then read again. If the error

persists, 'hen the page number is entered n :he Bad Page List. All the pages of the disk are checked

in tr s ay.

6.8 1/0 Device Subsystem

An /0O device is treateo as a special type of file where no transaction is allowed and a device

specific control scheme is included. To read. write or issue a special command such as reset, a

device must be opened before any read/write access and it has to be closed after all of the actions

are completed.

Ail cf the device dependent commands can be sent to devices by using the SetloctI primitive.

did = Open Device(devicename, mode)
CloseDevice(dd)

nr =ReadDevice(dd, buf, nbytes)
nw =WriteDevice(dd, buf, nbytes)

event-cnt =low ait (dev-descriptor, timeout)

. val z: Set loctlI(dev-descriptor, io-command, dev-buf, timeout)

1; s still ro-,sible for unr.efc'rirrd files to ox-, sinr iiiw, 'Jarnine rcoiic'inn prociodtul * I rinot ': r .:i 'b rtr

ince o - 'e t eIsuriysterr

224

It should be noted that the current I/0 system does not interact with the transaction manager at all.

Thus, any type of transaction facility is provided.

6.8.0.1 Policy Management

The policy management provides system functions to add, delete, and modify the policy definition

module in ArchOS. Since the placement of the policy definition module is a major issue in terms of

the system performance, ArchOS allows a client to specify the location by using a policy definition

descriptor. The policy definition module consists of a policy body and a set of policy attributes. Both

the policy body and attributes can be modified at runtime.

pdd AIlocatePDDO
val = FreePDD(pdd)

val SetPolicy(policy-name, policy-def-desc)
val = Set Att ribute(policy-name, attribute-name, attribute-value)

An AllocatePDD primitive allocates a policy definition descriptor in the kernel and FreePDD releases

the allocated descriptor. A SetPolicy primitive links a user-defined policy definition module to

ArchOS. A SetAttribute primitive set a specific value(s) for its one of attribute.

6.9 Time-Driven Scheduler Subsystem

Process scheduling in a real-time facility is crucial to the success of the system. Process

scheduling in ArchOS differs fundamentally from scheduling on other operating systems because of

several critical factors:

* ArchOS is a real-time system; hence process scheduling must be compatible With its
critical goal of supporting application-defined time constraints

" ArchOS design manaqes application time-constraints by explic~rly accounting for the fact
that there is a dt-finnble time-varying value to the system for completing each procePs3 at a
particular time.

6.9.1 Best-Effort Scheduling

6.9.1.1 Value Function Processing

The ArchOS scheduhler, part of the ArchOS Kernel Aroblect (see Section 6.3.1 r~e_,,jried to exlic:tly

use the application defined value function for the set of processes in its queue in ma-ing a "best

effort" decision on the process to be executed at each point in time.

225

The computational model for this scheduler consists of a set of schedulable processes p. resident in

a processor. Each such process has a request time R, an estimated computation interval Ci and a

value function V,(t), where t is a time for which the value is to be determined. Figure 6-31 illustrates

these process attributes for a process with a linearly decreasing value function prior to a critical time

Di , and an exponential value decay following the critical time. The illustration depicts a process which

is dispatched after its request time and which completes prior to its critical time without being

preempted.

Vi

time

C1

Ri D1

Figure 6-31: Process Model Attributes for Process i

V.(t) defines the value to the system due to completing pi at time t. The set of these value functions

is used by the scheduler to determine the best sequence in which to schedule each of the available

processes. The type of functions definable for Vi will determine the range of scheduling policies

supportable by the operating system, particularly with respect to the handling of a processor overload

in whicn some critical times cannot be met.

We note that the ,xistence and importance of tile deadline is dependent on the value function. The

value function can be said to define an explicit deadline only if it has a discontinuity in the function, its

first derivative, or its second derivative, in which the value is lower or decreasing after the

discontinuity. In Figure 6-31, the deadline is defined by the discontinuity in its first derivative at the

critical time 0..

At any particular point in time, there will be n proce.sses ready for scheduling, resulting in n!

possible scheduling sequences. Each of these sequences consists of a proces.5 oWt. riny

226

(mil,. -md), where p,,. would be the ith process to be scheduled. A scheduling sequence will be

considered optimal if, with respect to the available information at the time of the scheduling decision,

P3 is maximized, where P3= 1 V.(T) and T, is the actual completion time of p, using this scheduling

sequence (i.e., it p. is the jth process to be scheduled, then T = 'ilC _). See Figure 6-32 for Ln

example of four processes with value functions, for which the choice of a best effort schedule is

non-trivial. The figure shows the four value functions, and a potential scheduling sequence such that

each completes with a high value.

34

V
2

2

3

" 4

Time -

Figure 6-32: Four "Typical" Processes with their Value Functions

Since the completion times used for this scheduler will be known only stochastically, the assumed

distribution and its computed parameters (e.g., mean, variance) will be used to compute its expected

value in the scheduling sequence, resulting in a statistically "good" sequence. Making an optimum

5cheduie canl be shown to be computationally intractable, so the best-effort schauduler WI use a set of

heuristic, to determine a sequence which will generate a high total value over any time period which

is sufficiently long with respect to the completion times of the processes to be scheduled.

6.9.1.2 Well-Known Scheduling Algorithms

Scheduling a set of processes consists of producing a sequence of processes on one or more

processors such that the utilization of resources optimizes some scheduling criterion. Criteria which

have historically been used to generate process schedules includes maximizing process flow (i.e.,

minimizing the elapsed time for the entire sequence), or minimizing the maximum lateness (lateness is

defined to be the difference between the time a process is completed and its deadline). It has long

227

been known [Conway 67] that there are simple algorithms which will optimize certain such criteria

under certain conditions, but algorithms optimizing most of the interesting scheduling criteria are

known to be NP-complete [Garey 791, indicating that there is no known efficient algorithm which can

produce an optimum sequence. Clearly, the choice of metric is crucial to the generation of a

processing sequence which will meet the goals of the system for which the schedule is being

prepared.

There are several well-known scheduling algorithms which have traditionally been used in process

scheduling, each with properties which make it useful for certain applications. Among these are:

1. SPT. At each decision point, the process with the shortest estimated completion time is
executed. This algorithm maximizes overall throughput, and is frequently u6ed (although
in modified form) in batch systems.

2. Deadline. At each decision point, the process with the earliest deadline is executed.
This algorithm, in the absence of an overload, will result in meeting all deadlines. More
precisely, this algorithm will minimize the maximum lateness.

3. Slack. At each decision point, the process with the smallest estimated slack time
(elapsed time to the critical time minus its estimated completion time) is executed. This
algorithm, in the absence of an overload, will also result in meeting all deadlines, but will
produce a much higher level of preemptions. This algorithm will maximize the minimum
lateness.

4. FIFO. At each decision point, the process which has been in the request set longest is
executed. This algorithm will produce a relatively "fair" schedule, in which lateness will
be spread out to all processes.

5. Priority. At each decision point, the process with the highest fixed priority is executed.
The "most important" process is executing at any moment.

Of these, real-time systems traditionally use only the Priority and/or FIFO schedulers. It should be

noted th_t no objective performance measures (e.g., meeting deadlines, high throughput, low

lateness or 'rdiness) are even approximately optimized by these algorithms, but they are inexpensive

to implement and require very few run-time resources.

In priority-driven scheduler systems, deadline management is attempted by assigning a high fixed

priority to processes with "important" deadlines, disregarding the resulting impact to less
"important" deadlines. During the testing period, these priorities are (usually manually) adjusted tintil

the system implementer is convinced that the system "works". This approach can work only for

relatively simple systems, since the fixed priorities do not reflect any time-varying value of the

computations with respect to the problem being solved, nor do they roflect fact that thure are many

228

schedulable sets of process deadlines which cannot be met with fixed priorities. In addition,

implementers of such systems find that it is extremely difficult to determine reasonable priorities,

since, typically, each individual subsystem implementer feels that his or her program is of high

importance to the system. This problem is usually "solved" by deferring final priority determination to

the system test phase of implementation, so the resulting performance problems remain hidden until it

is too late to consider the most effective design solutions.

Using a deadline scheduler(i.e., a scheduler which schedules the process with the closest deadline

first [Liu 731) solves the problem of missing otherwise schedulable deadlines due to the imposition of

fixed priorities, but leaves other problems, most notably the problem of the transient overload. The

deadline scheduler provides no reasonable control of the choice of which deadlines must be delayed

in an overload, leading to unpredictable failures and resulting in an impact on reliability and

maintainability.

6.9.1.3 A Best-Effort Scheduling Algorithm

The creation of a best-effort scheduling algorithm is one of the key research interests of the

Archons project, and work on it is currently underway at this writing. However, there are some

preliminary results which have been produced, and which will be used, at least in our initial scheduler

design. In this initial algorithm, we take advantage of several observed value function and scheduling

characteristics:

" Given a set of processes with deadlines which can all be met based on the sequence of
the deadlines and the computation times of the processes, it can be shown that a
schedule in which the process with the earliest deadline is scheduled first (i.e., a Deadline
schedule) will always result in meeting all deadlines.

" Given a set of processes (ignoring deadlines) with known values for completing them, it
can be shown that a schedule in which the process with the highest value density (V/C, in
which V) is its value and C) is its processing time) is processed first will produce a total
vaiue at any period o lime iiu lower than an~y uther schedule.

" Most value functions of interest (at least among those investigated at this time) have their
highest value occurring immediately prior to the critical time.

Some of the implications of these observations are:

" If no overload occurs, all deadlines will be met, and the value function produced by the
deadline schedule will be as high as possible.

" If an overload occurs, and some processes must miss their deadlines, the Value Density
Schedule would produce a high value.

" Therefore, if we can predict the probability of an overload, wve can chonose processe '.,ith

229

low value density as candidates for being removed from a deadline schedule, until a
deadline schedule is produced which has an acceptably low probability of producing an
overload.

The algorithm we will use, then, will start with a deadline-ordered sequence of the available

processes, which will be sequentially checked for its probability of overload. At any point in the

sequence in which the overload probability passes a preset point, the process prior to the overload

with the lowest value density will be removed from the sequence, repeating until the overload

probability is acceptable.

6.9.2 Time Management

The ArchOS scheduler will use information provided by the time management primitives to make its

scheduling decisions. This information is derived from these primitives:

rtc = GetRealTimeO
Timedate(time, date)

TimeDate = Delay(deltime, criticaltime, comptime, setflag)
TimeDate = Alarm(alarmtime, criticaltime, comptime, setflag)

val = SetTimeDate(time. date)

In addition to these primitives, policy directives will be used which are provided by the Policy

module (see Section 4.2.6).

The information needed for making the scheduling decisions includes:

1. The request time. This .s the time a process becomes available for execution, although
its value function may be negative, forcing the scheduler to delay it until it can be
completed with as high a positive value a. possibie. iis vaiue fur cijul .'- defined by tile
process itself using the delay or alarm primitives.

2. The critical time. This time is the time relative to the request time for the process at
which the value function may have a discontinuity, and is determined when the process
was requested. Its value relative to the request time is set by the process itself using the
delay or alarm primitives.

3. The value function parameters themselves. The value function is divided into two
parts: (1) the value for completing the process prior to its critical timc:, and (2) th'e 'atue
for completing the process after its critical time. In each of these functions, the time LJse d
in computing the function is relative to the critical time. !o the value finction used prior to
the critical time measures its time "backwards" E-ch function ha.s the form: I(I =
K +. K 2t.K3t2 -K4eK 5) so there are ten parameteis; defining the tntal value function.

230

Value function parameters are defined by the application programmer. but ire modified
by the system policy currently in effect. In the case of processes 0 e., server processes)
scheduled on behalf of other processes (i.e., client processes). the value function can. at
the option of the process, use either the value function of its client or its own value
function.

4. System policy. The system policy is set by the policy module, and consists of 3 set of
specific policy choices (e.g., abort processes whose value functions have fallen below
zero) as well as two parameters for each process in the system. The values are Ka and
K b, and are used to make a linear transformation to the applicationdefined value
function: 11(, = K 3- KbV(t)) It is V'(t) which is actually used to perform the *alue function
sch'eduling computation.

6.9.3 Short-term vs. Long-term Scheduling

Using the algorithm described above in subsection 6.9.1.3, these decisions will result in a long term

high value as long as an overload condition is not maintained for a significant period of time. A

critical part of the scheduling algorithm will be the computation of the probability that an overload

condition, other than a transient overload, has occurred or is about to occur, which will result in

making a decision about long-term reconfiguration across the system node boundaries. In addition to

decisions about reconfiguration, decisions with respect to process abortion, preemption. and process

scheduling in support of client processes outside the node will be made by the scheduling algorithm.

ArchOS will use a three phased approach to handling the inter-node scheduling control decisions,

including reconfiguration decisions as well as decisions about scheduling processes invoked across

node boundaries in support of common tasks, and including such decisions as when a process

should be moved and the decision of the best destination to which it should be moved.

1. Purely local information will be utilized. This means that the attributes of the functions
resident on the node will be used, but no inter-node coordination of process scheduling
will take place. Decisions by processes in one arobject to request services in another
aroblect (either local or remote) will be made unilaterally by the requesting node.

2. Primarily local information will be utilized, augmentcd with value functicn and cr:tical time
information from the clients of the processes being scheduled. In this way, cchedulhng by
one node on behalf of another node will be supportive of the needs of the client node as
far as possible, but no coordination of, for example, two server nodes in support of a third
client node will be performed. Thus, it is possible (but hopefully unlikely) that in a heavily
loaded environment two such server nodes could abort processes on behalf of clients in
such a way that no client gets adequately served, even tnough work is being performed
on its behalf.

3. Local information will be augmented by some form of negotiation aimong rhdlduhnq
rcutines to ensure that work on behalf of remote client processes is coordinit,..J, And, if
abortion is necessary, a best-effort is made to do it in a way wimc1h maiximnlz(-&; trl total

system value.

231

6.10 Time-Driven Virtual Memory Subsystem

The Time-Driven Virtual Memory (TDVM) Subsystem is responsible for managing the primary

memory page frames. It allocates those page frames among the most critical processes, as

dynamically determined by the Time-Driven Scheduler (TDS) Subsystem. The basic goal of the TDS

and TDVM Subsystems is to ensure that the required CPU time and primary memory space resources

are both ava.able when needed, in order to complete critical tasks within their deadlines.

Furthermore, when it becomes necessary to miss some deadlines due to overload situations, TDS and

TDVM ,attempt to allocate the oversubscribed resources to the most important processes. so as to

maximize the total value of the tasks completed (see Section TDSSEC).

The basic goal of the TDVM Subsystem differs substantially from that of a general purpose time-

sharing system's virtual memory manager. Although there are many theoretical results and a great

deal of practical experience in designing virtual memory systems for general purpose computing

environments, it is unclear how much of this work can be applied in the real-time (or time-driven)

environment of ArchOS. Indeed, very few real-time systems to date have supported virtual memory

facilities, since it is very difficult to provide real-time guarantees in the face of unexpected paging

activity. Thus, the design of the ArchOS TDVM Subsystem, as outlined in this Section, can only be

regarded as a preliminary version. It provides the required functionality. but manI of the polices and

design decisions are based on little or no supporting data or theory. This area cf the ArchOS design

will be one of the important focus points for further study, experimentation, and development.

6. 10.1 Memory Management Policies and Techniques

In order to manage the primary memory (space) resources in a time-driven fashion, consistent with

the management of the CPU (time) resources, the TD'/M Subsystem uses the "working set model" as

the basis for its management policies and techniques. The working set nodel for memory

management was first descroed by Denning [Denning 68], and it has oeen The ffuus of a greai deal uf

subsequent research [Deoning 80]. The working st of a process is defined a3 the set of its vih al

memory pages which have been accessed within the last W units of CPU (virtual) time. Note that

working sets are defined on a per-process basis, and are determined with respect to the per-process

virtual times. The goal of a working set memory manager is to ensure that the complete working set

'or each active process iGs resident in primary memory. If there are too many active processes, some

will have to he swappEd out to secondary memory (aId thu, become inactive). to on,; ire that aI of thfe

remain ng working seth wvill fit within primary memory. Thi. ,juar;iant,:e that th, active roc(',: :, , l

execute efficiently, with 11 minimum number of page fuults (i e. 'thrashing 's ;,.,vodd).

232

Since a working set memory manager determines wnich pages are to be roSidlflt in primar meniory

on a per-process basis, it is called a "local" memory management technique. This is in tontrast to

"global" techniques, which are only concerned with the real time since a page was last accessed.

regardless of which process it belongs to. For the purposes of time-driven virtual memory

management, a local technique is expected to be much more effective in allocating the primary

memory resources to the most important processes. This is because it can account for variations in

the urgency of processes, based on their deadlines and the penalties for missing them, and ensure

that the most urgent processes have their working sets completely resident.

A key factor affecting the operation of a working set memory manager is the choice of W, the

working set parameter or working set window size. In traditional time.sharing environments, it has

been found that using a single value of W, the same for all processes. works almost as effectively as

selecting the window size on a per-process basis. Also, the overall paging behavior of the system s

not very sensitive to small changes in W, although W must be tuned somewhat to yield performance

that is close to optimum.56The situation in a time-driven environment is somewhat different, since the

goal is to ensure that deadlines, especially all of the more important deadlines, are met, and there is

much less concern with overall system throughput. In this case it could be beneficial to vary the

working set window sizes, depending on the criticality of the individual processes. Furthermore,

since tha criticality of a process can vary with time, it may be useful to dynamically vary its window

siz- as well.

Since the value of W depends upon the criticality of the individual process (how near it is to its

deadline. and the penalty for missing it), only the TDS Subsystem is in a position to specify the varying

window sizes. Only a few, discrete window sizes, corresponding to multiples of some standard

window size, w, should actually be needed. An adequate set of sizes might be (w, 2w, 4w ... 128w).

Note that w is a global system tuning parameter, corresponding to the single window size of a

standard. time-sharing, working set memory manager. TDS informs TDVM of the various working set

window sizes at the same time it provides TDVM with the ordered list of runnable processes, i e. as a

result of calling the Schedule primitive (see Section TDSKERSEC).

For the case of time-sharing working set memory managers, it has been found that maintaining just

the working set sizes (number of pages) across process swaps, without recording the individual

56 f N oo too small excessive paqrinq .'.ill occur, beraur;e t will not ('anisure the "natural" ,oitking sets frr m.ry MrocessPs

On ire other hand. if ' ,s oo iarge excessive w pnrirq -i.li occur. Thlr,;,s .Lucduse the woii.n :ets will 1-o ir fr :lu. to

uJiges tak li- Iongr.r to prs." out of h! yvorking so ,,idldju,, 'ind fewer worklmq i el(s can then be hi ,n ;-tiniary h , (. ttmq

N O rtinrum nvolvcs bailrinri these No'A effects o ar-, to inaximizt: over;ill sy"' ',m hrc'i(jhplut

233

pages of the working sets, still yields adequate performance. The working set pages are simply

faulted back in on demand, after the process has been swapped back in. However, in a time-driven

system such paging behavior may not be acceptable, especially if the process is nearing its deadline.

As a result, TDVM will maintain the actual lists of working set pages for all processes, whether active

or swapped. This will allow the working set of a process to be efficiently reloaded at swap-in time.

The choice of which working sets should be resident in primary memory, and which should be

swapped-out, will be made by TDVM based on the order of the processes in the scheduling list, which

is returned by the TDS Schedule (or RequestSwapList) primitive. In general, the most urgent

processes will be at the head of the scheduling list, and TDVM will attempt to load and maintain the

working sets of as many of those processes as possible. Since it is expected that most processes will

gradually rise through the scheduling list as their deadlines approach, this technique shculd result in

the preloading of most working sets, prior to the time the associated processes have to run. If a

working set has to be swapped-out in order to make space for one that is to be swapped-in, either the

unswapped process closest to the end of the scheduling list, or the process that blocked least

recently, will be selected for swapping-out.57 If the unswapped process that blocked least recently has

been blocked for more than some threshold amount of time, it will be the one selected for swapping-

out.

For the processes which are currently active, techniques are required for determining which pages

belong to their working sets. At the time that a new process is created, there is no execution history

available to indicate what its initial working set ought to be. In order to reduce the numher of nitial

page faults, and hence improve the efficiency of process "loading" and startup, TDVM will allow an

initial working set to be specified. This initial working set could either be determined heuristically (for

example, x percent of the User Text and y percent of the User Data), or it could be based Gn

information obtained through previous executions of the process.

As a process runs, TDVM must dynamically adjust the process woiking set. to tr-icK tie prioDck- .

through different phases of its execution. The primary way that pages get added to & worKing set 3

through page faults, i.e. as new pages are accessed they get paged-in "on demand' if 1 OVM dete'Its

sequential paging activity in one of the data segments of a process' address space, it can attempt to

do sequential pre-paging. This technique can be very effective in improving the perforrnance of

sequentially accessed File Arobjects, and in many other situations as weil. Cre othf-r ., th'ht p,',

,57The scheduling list will contain all processes which ar,. "slenpiong' (due to oeiay r ~r'n .,r,,r."
blocked for other reasons (such as Accpot priitiitves) wi l not appeara, (hal lit.

234

can get added to a working set is if the working set window size is increased.58When TDVM detects

an increase in the window size (by checking the value in the scheduling list, obtained through the

TDS Schedule primitive), it must scan through the "last accessed times" of all pages in the address

space. This will allow it to determine which pages should be added to the working set (paged-in), in

addition to those already there.

The removal of pages from a working set occurs when pages fall outside of the working set window.

This can happen either as a result of the process' virtual time advancing more than W units since one

or more of the working set pages were last accessed, or as a result of the working set window size

decreasing. A decrease in the window size is detected in the same manner as an increase, but in this

case only the current working set pages need be scanned to determine which, if any, are to be

removed from the working set. Determining the last accessed times for pages of the working set can

only be done approximately, assuming no specialized virtual memory hardware other than USED flags

is avai able. It is accomplished by scanning the USED flags of the working set pages every time w

units of virtual time have passed.59 For every page in which the USED flag is set, that flag is cleared

and the :ast accessed time is updated to the current virtual time. For any page in which the USED flag

was c!ear. the last accessed time is checked to see if it falls outside of the working set window. If so,

that page is removed from the working set.60

One other major responsibility of the TDVM Subsystem is management of the free page frame pool.

A free page is any primary memory page which does not belong to one of the currently active working

sets. Such a page can be in any one of three different states:

1. On the Page-Out List: It corresponds to an existing page in a secondary memory page
set. but it has been modified and hence must be written back to the page set before it can
be reused.

2. On the Reclaim List: It corresponds exactly to an existing page in a secondary memory
page set, and hence it is free to be reused without first writing it Uack to the page set.

3. Cn the Free List: It is completely free to be reused, since it does not correspond to any
existing page in a secondary memory page set.

58-'h,s narpens when TDS detprmines that it has now become more important to avoid page faults. because the prr.,, iS
nearing is d 3dine and the nexafry for missing h deadline is nigh

59Pecall that N. the working -et window size, is some multiple of w, the base window size.

60Note 'h.jt. in practice. worknj set scans could b initiated 'it the time of prcccscsor reSct1,(!1Jh l,'..n'i :!1, to

Screuo/ii 'j,-iming that suc) ,J,csions occur it intervals of it mod l N units rA r,,:il time n h it _ _ , h lr' ., '

wcfitin g 'Et n?,Cd only be scanned .f the prnce-,, has ar.cum ldted it ,'i st w units ,it virtijil imp ti ,' I ' , '!. u, I

235

When a page falt occurs, TDVM checks the Page Gut and Reclaim Lists to see f the re, uLiro.'d page

is already in primary memory, and hence can be quickly "reclaimed" If so. the time and expense of

reading the page from its secondary memory page set can be avoided Otherwise a free page must

be selected to hold the contents of the page as it is read from the page set. Pages are selected first

from the Free List, but if it is empty, then they will be selected from the Reclaim List. The Reclaim List

is maintained in FIFO order, so that those pages which have been free for the longest time will be

selected first for reuse. If the Reclaim List is also empty, then a page from the Page-Out List will have

to be selected. Of course, that page will have to first be written back to its corresponding page set,

before it can be reused. The Page-Out List, like the Reclaim List, is maintained in FIFO ordLr. so the

page that has been free the longest will be the first to be reused. In the event that no free page can be

found. i.e. the Page-Out List is also empty, then TDVM must initiate the swapping-out of a process in

order lo make some free pages available.

To help avoid the situation of having to page-out or swap-out at page fault time (i.e. to help reduce

the e!apsed time for handling a page fault), TDVM attempts to maintain a mimimum number of pages

in the Free List and Reclaim List combined. When the number of available pages in these lists drops

beloN a threshold (approximately five percent of the primary memory page frames), TDVM ,IIl initiate

page-out operations in order to move some pages from the Page-Out List to the Reclaim List. If there

are still not enough free pages available, then TDVM will initiate a swap-out operation in order to free

all of the working set pages from some process (the least urgent one). Note that chec,ing the free

page threshold and initiating page-out and swap-out operations can be done at the time of processor

rescheduling decisions, just as for the case of initiating working set scan operations.

6.10.2 Time-Driven Virtual Memory Subsystem Primitives

The TDOVM Subsystem provides the following set of primitives, primarily for use by the

Aroblect/Pocess Management (A/PM) Subsystem:

236

val = VMPrePage(asid, vpa, nvp)
val = VMLock(asid. vpa, nvp)
vat = VMVUnlock(asid, vpa, nvp)

pid = VMPageFault(asid, vpa)
pid = VMScheduleO)

val = VMFlush(asid. vpa. nvp)
vat = VMSwap()
gpsid = VIVFreeze(asid)
val =VMUnfreeze(gpsid [, asidl)

val = VMMove(asid, vpa, desired-vpa)
val = VMZero(asid, vpa, nvp)

vat VMDestroy(asid)
vat VMFree(asid, vpa)

val = VMStatus(statusbuffer [, asid])
vat = VMVRestart()

BOOLEAN vat TRUE if the specified operation is completed successfully; otherwise FALSE.

PID pid The process 1D of the process which is to be run at this time.

GPSID gpsid Global Page Set ID, which identifies the temporary page set containing the frozen
(swapped) address space descriptur information. It includes the 10 of the logical
disk containing the page set, the page set type (TEM1PORARY), and the unique ID
of this page set within the logical disk.

ASID asid Address Space 1D, which identifies the address space to be operated upon, The
corresponding process 1D can be easily obtained from an ASIC, and viice versa.

VIRT-PAGE ADDRESS vpa, desired-vpa
A virtual page address within an address space.

NT nvp The number of virtual pages involved in the operation.

VMSTATUSBUFFER *statusbuffer

The buffer address for returning status information.

0n, Error: Error conditions are indicated by the use of !special return value~s The details
concerning the precise nature of ain error condition are provicled in the Kernei
Error Block.

237

The VMPrePage primitive initiates the paging-in of the specified set of virtual pages (nvp pages,

beginning with page vva), in address space asid. This is useful for setting up an initial working set of

pages for a newly created process, since otherwise there is no execution history to indicate what the

working set ought to be. The VMLocA primitive is similar to VMPrePage in that it causes the specified

set of virtual pages to be paged-in, if not already in primary memory. However, VMLock is

synchronous in the sense that it will not return until all of the specified pages are actually present in

primary memory. Furthermore, those pages will be "locked" in primary memory, i.e. they will not be

considered eligible for removal from the address space's working set, regardless of how long it has

been since they were !ast accessed. vMUnlock will "unlock" the specified set of virtual pages,

making them eligible for removal from the working set, and allowing the corresponding physical page

frames to oe subsequently reused.

VMPageFauit is the means by which the TDVM Subsystem is notified of page faults. It is assumed

that the specified virtual page (vfpa) is indeed one of the allocated pages of address space asid. and

hence the page fault is truly due to accessing a valid page that isn't resident in primary memory

(rather than a protection or invalid address fault). VMPageFault first checks to see if the missing page

is already present somewhere in primary memory. This would be the case if the page had been in

primar-y memcry earlier, was "freed" due to inactivity, but the associated page frame had not yet been

reused. :t would also be the case if the page is shared and is already resident as part of another

process vorking set. If the missing page is found in primary memory, the page fault is handled very

quic, ly. 'ith no need to switch processes. In this case VMPageFault will return the ID (pie) of the

currert process, which is the one that encountered the page fault. Otherwise VMlPageFault must

initiate a Oage-in operation. Since reading a page from a secondary memory page set car take tens

of mifiseconds (or even hundreds of milliseconds if paging-out is required before space is available

for the new page), a process switch is usually desireable when paging.in is required. In such cases,

/,MJPaaeF2 uit will return the ID of the process which should now run in place of the faulting process.

/MSc'ecuie is intended to be the primary means by which the Arobject/Process Nlana(jer

determines which process is to be running at the present time. VMSchedule calls the Schedule

function of the Time-Driven Scheduler. to obtain the ordered list of processes which are to be run

next. From this list the TDVM Subsystem can determine which address space working sets will be

required .n primary memory in the near future, allowing it to initiate any necessary page-in operations.

Pelated to this, /MX.5,"jule is 31so -'onsible for sczinning the working set pa;es of the current

process. to see if any cf them have not been accessed recently rnd can thus be removed from the

Norking set This scanning operation s cnly initiated tf the process has accunim lati:d sufficient virtual

'CPU) !ime since its ,iro nr et w-. s "'mt ,canned . ,:!erue returns the ID of the process v,;hich .

238

to run now. It guarantees that the address space for that process is the active one (see the

description of ASActlvate in Section 6.2.3.5).

The VMFlush primitive ensures that the specified set of virtual pages from the given address space

are all "clean", i.e any primary memory images of these pages are paged out, if they have been

flagged as MODIFIED. VMFlush, like VMLock, is synchronous. It will not return until all of the

modified pages have been written out to their corresponding page sets. VMFlush is primarily intended

to support the FlushPermanent primitive of the Arobject/Process Manager (see Section

PRIVOBJSEC). It is also used when "deactivating" arobjects, to ensure that all modifications have

been flushed out to the appropriate page sets before the address spaces are destroyed. Unless

directed to flush modified pages through VMFlush, the TDVM Subsystem will only initiate page-out

activity when primary memory begins to fill up, and some of the modified but not recently accessed

page frames have to be reused.

VMSwap provides a mechanism through which the Arobject/Process Manager can explicitly

request the TDVM Subsystem to "swap out" one of the existing but currently idle address spaces.

Ordinarily, the TDVM Subsystem will only swap out an address space if the combined working sets of

all of the existing address spaces overflow primary memory. In that case TDVM calls the Time-Driven

Scheduler's RequestSwapList function, to obtain the ordered list of swappable processes. TDVM

selects the most appropriate candidate from this list.61AII of the pages from the selected process'

working set are released, so that they can be paged-out and reused as required. TDVM then writes all

of the relevant address space descriptor information (including the list of working set ;ages) into a

temporar/ page set. 62The address space is then destroyed (using ASDestroy). which frees the

associated address space resources for use by others. This freeing of address space resources !s the

primary reason for making VMSwap available to the Arobject/Process Manager. it provides a

mechanism for recovering from "space exhausted" problems w-.hen creating or grn'.ving ,,ddress

spaces.

VMPFreeze is quite similar to VMSNap, except that it allows a specific address space (u;.c) to be

selected for "swapping". If that address space is already swapped out. the global page set :D qp;)

6 1The least "urgent" process, for which the expected continuatinn time ,s farthest n !he future :r, .'.,r't! hv|, t irIdy

Dee, swacped out, is selected. However, prccesses containing locked address mace ager i ', .:r ...,,.rr, ," ;:e fjr
5 #,;1vI ' q

52,t 15 not necessary to record all of the address space information Only th" Private Peicn l r-' t ie " :; rr. Inrl the
EXIST.S/CGPIEO flag for each page in those segments need be ived If this na:; ha I i t proce:, rm f ir,(, ,, : *',,I rr ;,
,Yhch vas stili resident on :his node mnnr not yet swalp cd out, then th' Ila' Jsl ' 's;,,rrs j: ,r :f.,'W!r' ,,I

corresoonding EXISTS flags vili also have to be saved,

239

of the temporary page set containing the address space descriptor is returned, after first ensuring

that all MODIFIED pages from that address space have been flushed. 631f the specified address space

is not currently swapped out, it is flushed and swapped (even if it contains locked pages), and the

gpsid of the temporary page set containing the address space descriptor is returned. VMFreeze

provides support for the Arobject/Process Management Subsystem's FreezeAroblect and

FreezeProcess primitives (see Section APMSEC). It is also used when migrating processes from one

node to another.

Following a VMFreeze operation, the TDVM Subsystem removes all record of address spac3 asjd,

except for the page sets on secondary memory. The VMUnfreeze primitive can be used to restore a

previously frozen address space (indicated by gpsid, the ID of the page set containing the address

space descriptor), to the swapped state (see Figure 6-33). VMUnfreeze provides support for the

UnfreezeArobject and UnfreezeProcess primitives of the A/PM Subsystem (see Section APMSEC).

Optionally, an address space can be given a new ID (asid) at the time it is unfrozen. This is useful

when migrating processes, since it allows the address space to be associated with a new process ID

on the new node.

VM~~~ve a t Arobjctroces Manag e itace to eASy ucin hc hne h

Swap Swap Destroy ~
Out I nrze

F e z Unfre'ze

_L___) Oestroy

Figure 6-33: Life Cycle of an Address Space

VMIMove is the Arobect/Process Manager's interface to the ASMove function, which changes the
location of an existing segment in address space asid from vpa to desired-vpa. This function must go

through the rDVM Subsystem, so that TDVM can Updatp any references it may have to the affected

virtual pages. See Section 6.2.3.5 for more details concerning the ASiJove primitive. VMZoro

3, hen an iddrs-.s soice ,s swaiced. all of is MOc IPED pairj are ilqged fcr raq -fl-out L-A . "
,mmediatel A frozon addre-% n .cn on the other hind. is gunrar~ll-? !o ar 1; been corrp#.ieiy f'uh,ed

240

provides an efficient mechanism for "zeroing" complete pages of an address space. It does this by

clearing the EXISTS flags for the specified virtual pages, so that the next time any of these pages are

accessed they will first be zero-filled. If the pages to be zeroed already exist on the corresponding

page set (the EXISTS flags were set), then VMZero will also call the appropriate PSZero or APSZero

primitive to zero (or free) the pages from the page set. One of the main purposes of the V[YZero

primitive is to provide efficient support for the ZeroFile primitive, which is provided by the File System

Client Interface (see Section 6.6).

'/MDestrcy and VMFree, like VMMove, are the A/PM Subsystem's interface to the corresponding

Address Space Management Primitives (ASDestroy and ASFree). VMDestroy completely destroys the

specified address space (asid), while VMFree deletes a segment (indicated by vpa) within address

space as'd. These functions must go through the TDVM Subsystem, so that TDVM can remove any

references it may have to the affected address space or segment, and free any corresponding primary

memory page frames. See Section 6.2.3.5 for more details concerning the ASDestroy and ASFree

primitives.

The VMStatus primitive is used to obtain general information concerning the current status of the

TDVM Subsystem. This includes the number of active and swapped address spaces, the average size

of the address space working sets, the number of free pages available, and the total number of

page-in, page-out, and page-reclaim (avoided or fast page-in) operations. This information can be

used for monitoring the system's virtual memory activity, so that the TDVM Subsystem can be tuned to

provide better performance. If an optional address space ID (asid) is specified, then VMStatus will

return virtual memory information related to that particular address space. This includes its status

(SWAPPED or ACTIVE), working set size, and page-in, page-out, and page-reclaim statistics.

The /MRestart primitive is the initialization operation for the TDVM Subsystem (on a particular

node). It is assumed to be called automatically as the first TDVM operation, upon restarting

(rebooting) a failed node. Its sole purpose is to create the TDVM worker (kernel) process-.s, and

initialize the virtual memory management data structures. These TDVM internal processes and data

structures are described in the following section.

6.10.3 Components of the Time-Driven Virtual Memory Subsystem

The TOVM Subsystem is implemented as a kernel aroblect, with a separate instance on each node

of the distributed computer system. Each instance is solely responsible for the management of the

primary memory page frames on its own node, and has no need to communicate or cooperate with

any of its peers on other nodes. Each instance of the TDVM Subsystem consists of three proce:;,.s

241

and five main data structures, as illustrated in Figure 6-34. The TDVM Manager process provides

almost all of the subsystem's functionality, and is the only process which can access and modify the

main data structures. The sole purpose of the Page-In Worker and Page-Out Worker processes is to

allow paging (page set read and write) operations to be performed asynchronously with other TDVM

Subsystem processing. The two worker processes are basically surrogates for the TDVM Manager.

They wait for page set operations to be completed on behalf of the TDVM Manager, allowing the

Manager to continue handling other virtual memory related operations.

Request(
VM I Reply

Operat ion\ Result

Workin Pag -i

TDVM Sets List

Manager List

Request Reply Request Reply Page-Out Reclain
for Page-In for Page-Out List List

Work Operation Work Operation

Page-in Page-Out

Worker WorkerFree
List

Request Request
Page Set Reply Page Set I Reply
.Oerat1on / Result Operation / Result

Figure 6-34: Components of the Time Driven Virtual Memory Subsystem

The first main data structure indicated in Figure 6-34 is the Address Space Working Sets List. This

data structure is illustrated in more detail in Figure 6-35. The Address Space L ist contains an entry

for every address space that is known to the TDVM Subsystem (whether it is currently active or

swapped out). Each entry indicates the current state of the address space (ACTIVE or SWAPPED). If

SWAPPED, the global page set ID (gpsid) of the temporary page set containing the address space's

242

descriptor is provided. See the second entry in the Address Space List in Figure 6-35 for an example.

Otherwise the entry contains information concerning the address space's current working set of

virtual pages.

asid state time W I S / V d nvp loc

as id state gpsid

3sid state time I W IWS vpa np lc

Figure 6-35: Address Space Working Sets List

For ACTIVE address spaces, the "last scan time" (time) and working set window size (W) are

provided, in addition to the actual list of virtual pages which comprise the working set. The last scan

time is the virtual (CPU) time at which the address space was last scanned to determine which pages

belong to the working set (were accessed recently). The W parameter defines "recently", by

specih/ing the virtual time frame during which a page must have been accessed, in order to be

considered a member of the current working set. The list of working set pages is arranged in clusters,

where each cluster is indicated by a starting address (vpa) and its size (nvp). Due to the "locality of

references", clustering of working set pages is expected to be quite common. Thus, this

representation of working sets will save space, and it will also improve the efficiency of page-in,

page-out, swap-in, and swap-out operations, since entire clusters can be read and written at a time.

Also associated with each cluster is a locH flag, which indicates whether or not those pages are

locked in primary memory (as a result of a previous VMLock primitive).

The second main data structure of the TDVM Subsystem is the Page-In List. This list is actually

maintained as two separate lists, one for urgent page-in operations (those resulting from page faults),

and another for the less urgent "pre-paging" operations (including the swapping in and expanding of

the working sets of address spaces which have increased in "urgency"). The use of two lists allows

the urgent page-in operations to be given precedence over pre-page operations. The two Page-In

Lists have identical structures, as illustrated in Figure 6-36.

243

Page Fault (Urgent) Pre-Vaae
P-iye-In L ist Page-In .I is

isId VPd nvp lock jasid Vpa nvp lock

Figure 6.36: Page-In Lists

Each entry in a Page-In List indicates the address space (asid) and the virtual page (vpa) of a virtual

page that is to be paged-in. The corresponding page set and page number can then be determined

using the ASGetGPSID or ASGetSTE primitives (see Section 6.2.3.5). Each entry can also indicate a

range or cluster of nvp virtual pages, beginning with virtual page vpa. Normally, nvp = 1 for entries in

the Urgent List, since this will allow the corresponding process to continue executing as quickly as

possible. However, the clustering of page-in operations in the Pre-Page List will help improve the

overall paging throughput. Each entry in a Page-In List also containc a lock flag, which indicates

whether that cluster of pages is to be locked into the corresponding address space's working set,

after it has been paged-in.

Two of the other main data structures of the TDVM Subsystem are the Page-Out List and the

Reclaim List. These two structures are closely related in that they both contain information about

primary memory page frames which no longer belong to any address space's working set. The only

difference between the two lists is that the pages in the Page-Out List have been modified, and hence

they must be written back to their corresponding page sets before they can be reused. The Paqu-out

List and +he Reclaim List each have the same logical structure, as i llistrated in Figure 6-37.

Each entry in the Page-Out List or Reclaim List represents a cluster of npages physical page frames,

beginning with ppa. This cluster corresponds to the npages of page set gpsid, beginning with* page

pnur.67The Page-Out List and Reclaim List together allow the TDVM Subsystem to quickly "reclaim"

pages which have not yet been reused, thus avoiding unnecessary page-in operations. Althcuqh

66Some experimentation i! needed to determine in which circumstances, if any, it might be desireable !o perform clustered
urgent page-in operations.

6 7 Once again the clustering of pages, especially in the Page-Out List, should hell) improve paging) ihirmuiplit.

244

Page-Out List Reclaim listL PS J pnum ppj npages j) s Id pnum ppa a (J

Figure 6-37: Page-Out and Reclaim Lists

conceptually they are simple lists (as illustrated in Figure 6-37), in practice the Page-Out List and

Reclaim List would be sorted into binary search trees, using (gpsid, pnum) as the key. This would

make the searching for reclaimable pages, as well as the insertion of new pages into existing clusters

very fast. In addition, each entry in the Page-Out List and Reclaim List would be threaded in FIFO

order on its respective "reuse queue". This ordering would allow the least recently used pages to be

selected for reuse, whenever the pool of "free" page frames was exhausted.

The final main data structure of the TDVM Subsystem is the Free Page Frame List, which is

illustrated in Figure 6-38. Each entry in the Free List has a very simple structure, and represents a

cluster of npages physical page frames, beginning with ppa. Each cluster is completely free to reuse,

since it does not correspond to any existing virtual address space pages. In practice, the Free List

would be sorted into a binary search tree, using ppa as the key. This would make the insertion of

newly freed page frames into existing clusters very fast. In addition, each entry would be threaded on

an appropriate list according to its cluster size (npages). There are 32 separate cluster size lists, one

for each power of two. This arrangement helps reduce primary memory "fragmentation", allowing

page-in clusters of the appropriate size to be found very quickly.

pap npa qes

Figure 6-38: Free Page Frame List

245

6.10.4 Interaction With Arobject/Process Manager and Time-Driven Scheduler

The TDVM Subsystem interacts extensively with both the Arobject/Process Manager and the Time

Driven Scheduler, on the local node. Figure 6-39 illustrates the primary "uses" relationships among

these subsystems. A/PM interacts with TDVM in two main ways, either directly through the

invocation of TDVM primitives, or indirectly through the manipulation of address spaces. Since most

address space manipulations are actually performed by TDVM, and TDVM must maintain consistency

between its own data structures and those of the Address Space Management Routines, A/PM is

quite restricted in terms of the address space operations it is allowed to perform. In particular, certain

operations (ASDestroy, ASFree, ASMove) must be invoked by A/PM via the corresponding TDVM

primitives, as noted earlier. However, address space creation (ASCreate) and growth (ASAIIocate,

ASExpand) can both be handled directly by A/PM, since TDVM will learn about them automatically as

the new address space and pages are used.

Arobject/Process Management Subsystem

Time-Driven
Virtual Memory

Subsystem

Address Space Time-Driven
Management Scheduler
Routines Subsystem

Figure 6-39: TDVM, A/PM, and TDS Subsystem interactions

Besides address space manipulations, the other major area of A/PM and TDVM interaction is

process scheduling. The determination of which process is the best choice to be running on a node

at any given time is ultimately the responsibility of the Time-Driven Scheduler. However. TDS is not

aware of the status of the process address spaces (ACTIVE or SWAPPED), and thus it could select a

246

process which TDVM has not yet had time to swap back in.681n order to coordinate properly between

TDVM and TDS on the choice of which process to run at the present time, A/PM must always use the

VMSchedule primitive, rather than directly invoke the TDS Schedule primitive. Figure 6-40 illustrates

the normal sequence of events which occur when A/PM must reschedule the processor, due to the

current process blocking or completing.

r7,OeSChedule

V:4Schdul eReschedulv

(7) ASActivate (5) Schedule

TDVM D

(8) val (6) pld-list

Figure 6-40: Normal Processor Rescheduling Sequence

A/PM first invokes the TDS Deschedule primitive, and after it completes (returns val) A/PM enters

the "idle state", waiting for a "Reschedule" signal to indicate that another process is ready to run.

When TDS has determined which process to run next, it sends the Roschedu!c signal (interrupt) to

A/PM.69Upon receipt of the Reschedule signal, AP/M calls VMSchedule to determine exactly which

process is to be run next, and to switch to its associated address space. VMSchedule itself calls the

TDS Schedule primitive, to see which process the scheduler has selected. Assuming the selected

process is not swapped out, TDVM activates the process' address space (by calling ASActivate), and

returns the 1D of the process (pid) to-, r,/P. A/PM then completes the switch to process p'^d, and Gct

it running.

If the process selected by the TDS Schedule primitive (the first process returned in pid-list) is

currently swapped out, VMSchedule will initiate the swapping.in o' that process, and select a different

68This should seldom happen, but it can occur if all of the most urgent processes block in rapid .uccussion, walting for
various events. The best choice among the remaining "ready" processes could then be one that 13 still swapped out, since
TDVM had not anticipated the need to run it so soon Another way Ihis can happen is it a process Nvhich avis blocked for a long
time and qct swapped out suddenly becomes ready to run again, and it is immediately selected as the ino.-t uruent process.

69If another process is already available and ready to run, there should be essenhially zero delay h[otfoe TOS :ends the
Reschedule signal.

247

pid from pid-list. To be selected, a process must be the first one in pid-Ist which is not currently

swapped out, awaiting completicn of a page-in operation, or put on "hold" by TDS.70 If no appropriate

process can be found, VMSchedule returns BAD-PID to A/PM. This informs A/PM that it should

return to the idle state, rather than switch processes at this time.

In addition to rescheduling the processor when the current process blocks or completes,

preemptive rescheduling can also oc.cur. Preemptive rescheduling due to an urgent process

unblocking works almost identically to the normal rescheduling sequence outlined above, and

illustrated in Figure 6-40. The only difference is that A/PM invokes the TDS SetScnedulenfo primitive

(rather than Deschedule), upon the occurrence of an event for which a process is waiting (blocked).

This informs TDS that the previously blocked process is now schedulable, so that TDS can determine

when it should be run. In the meantime, A/PM can allow the process which was running at the time of

the event to continue executing. If TDS determines that the newly unblocked process should be run

immediately, it will send a Reschedule signal to A/PM. A/PM will then save the state of the current

process, and initiate the standard VMSchedule sequence discussed above. Similarly, if at any point

TDS wishes to preemptively reschedule the processor (because an urgent process has just

completed its delay, or there has been some other significant change in the value functions of

processes), it can do so by simply sending a Reschedule signal to A/PM.

Two other reasons for rescheduling the processor, of particular relevance to TDVM, are the

occurrenc3 of page faults and the completion of page-in and swap-in operations. The sequence of

events which occurs upon page fault is illustrated in Figure 6-41. A process execution fault first

comes to the attention of A/PM. If it is a page fault, A/PM saves the state of the current process, and

invokes the VMPageFault primitive of TDVM. If a fast page reclaim is possible, TDV;,A handles it

immediately and returns the pid of the current process, so that A/PM can continue its execution.

Other'.vise, TDVM initiates a page-in operation, and calls Schedule to determine which process should

be run while waiting for the page-in to complete. Note that since the faulting process has not been

Descn7eduled, it Will still appear in the pid-list returned by Schedule, but it will be ineligible for

selection because it is awaiting completion of the page-in operation. If no appropriate process is

available. BAD-PID is returned to A/PM, indicating that the processor should remain idle at this time.

Otherwise, the address space of the selected process is activated, using ASActivate, and its pid is

returned to A/PM in order to set it running.

70 The loic flags .lre riurned .alonr Pith the cids in piro-,';s? They irdict, vhfdi proces,, s ir not to ne rim Ai i ,.-ent,

either because they nre ,till sleeping, or becaa1,e there is; [.'nalty for runnlr,j tIhorn too soon

248

(1) Fault >, /P

(2) (7)
VMPageFau(t pid

(5) ASActivate (3) Schedule

(6) val (4) pid-l ist

Figure 6-41: Page Fault Sequence

The sequence of events which occurs upon the completion of a page-in or swap-in operation is
illustrated in Figure 6-42. TDVM is notified of such an event through a new "Request for Work" from
its Page-in Worker process (see Figure 6-34). In response to this, TDVM initiates the standard
(preemptive) rescheduling sequence (as discussed above), by sending a Reschedule signal to A/PM.
Note that the process for which the page-in or swap-in operation has just been completed should still
appear in the pid-list returned by Schedule, but now it will be eligible for selection as the process to

be run next.

Reschedul e 3

VMSched pid

(6) ASActivate (4) Schedule

(7) Val (5) pid-list

(1)

Pageset
Read

Compl eted

Figure 6-42: Page-In or Swap-In Completion Sequence

249

6.11 System Monitoring and Debugging Subsystem

The system monitoring and debugging subsystem provides various abilities to monitor and control

behavior of cooperating arobjects and processes during the execution time. The monitoring and

debugging manager exists on each node and has a special privilege to freeze or unfreeze an activity

of the arobject or process.

6.11.1 Monitoring and Debugging Management

The actual operations for the monitoring and debugging operations are performed in the

arobject/process or communication subsystems. For instance, Freeze, UnFreeze, Fetch, Store

operations on an arobject/process is performed at the arobject/process manager. However, Freeze

and UnFreeze operations for a specific node or for all applications are initiated at the monitoring and

debugging manager. Similarly, monitoring on the communication activity is supported by the

communication subsystem.

The following ArchOS primitives are supported for the monitoring and debugging management for a

client.

val = FreezeAllApplicationsO
val = UnfreezeAllAplicatonsO
val = FreezeNode(node.id)
val = UnfreezeNode(node.id)

BOOLEAN val TRUE if the primitive was executed properly; otherwise FALSE.

NODE-ID node-id The node id indicates the actual node which will be stopped.

A FreezeAllApplications primitive stops the entire activities of caller's application, and a Freeze tlode

primitive halts all of the client's activities in a specific node. To resume client's appli-atioN,

UnfreezeAllApplications or UnfreezeNode will be used.

6.11.2 Monitoring/Debugging Protocol

When a system.wide Monitoring/Dobugging request such as FreezeAllApp/ications is issued, a

Monitoring/Debugging Manager's worker becomes a coordinator among the other

Monitoring/Debugging Managers and propagates the request to the others.

250

References

[Ada 83] Ada Programming Language
1983.

[Almes 83] Almes, G. T.; Black, A. P.: Lazowska, E. D.; Noe, J. D.
The Eden System: A Technical Review.
Technical Report 83-10.05, University of Washington, October, 1983.

[Bernstein 831 P. A. Bernstein, Goodman, N.; Hadzilacos, V.
Recovery Algorithms for Database Systems.
Technical Report TR-10-83, Harvard University, 1983.

[Bobrow 811 Bobrow, 0. G.; Stefik, M.
The LOOPS Manual.
Technical Report KB-VLSI-81-13, Xerox Palo Alto Research Center, August. 1981.

[Comer 79] Comer, D.
The Ubiquitous B-tree.
ACM Computing Surveys 11 (2):121-137, June, 1979.

[Conway 67] Conway, Maxwell, and Miller.
Theory of Scheduling.
Addison-Wesley, 1967.

[Denning 68] Denning, P.J.
The Working Set Model for Program Behavior.
Communications of the ACM 11 (5):323-333, May, 1968.

[Denning 80] Denning, P.J.
Working Sets Past and Present.
IEEE Transactions on Software Engineering SE-6(1):64-84, January, 1980.

[Garey 79] Garey, M. R.: Johnson, D. S.
Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, San Francisco, 1979.

[Gifford 79] Gifford, D. K.
Weighted Voting for Replicated Data.
Operating Sy.tems Reviw 13(5), December, 1979.

[Goldburg 83] Goldburg, A.; Robson, D.
Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, 1983.

[Gray 77] James Gray.
Notes o Data Base Operating Systems.
Technical Report, IBM Research Laboratory, San Jose, 1977.

[Herlihy 84] Herlihy, M. P.
Replication Methods for Abstract Data Types.
PhD thesis, MIT Laboratory for Computer Science, 1984.

251

[Jensen 84] Jensen, E. D. and Pleszkochi, N.
ArchOS: A Fhysrically Dispersed Operating System -- An Overview of its Objectives

and Approach.
IEEE Distributed Processing Technical Committee Newsletter, Special Issue on

Distributed Operating Systems , June, 1984.

[Jensen 85] E. Douglas Jensen, H. Tokuda, et al.
Functional Description of ArchOS (Archons Operating System).
January, 1985
Technical Report for RADC, Contract No. F30602-84-C-0063, Department of

Computer Science, Carnegie-Mellon University.

[Kernighan 78] Brian W. Kernighan, Dennis M. Ritchie.
The C Programming Language.
Prentice-Hall. 1978.

[Lazowska 31] Lazowska, E. D., Levy, H. M., Almes, G. T., Fischer, M. J., Fowler, R. J., and Vestal,
S.C.
The Architecture of the Eden System.
Operating Systems Review 15(5):148-159, December, 1981.

[Liu 73] Liu, C. L.; Layland, J. W.
Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment.
Journal of the Association for Computing Machinery 20(1):46-61, January, 1973.

[Locke 85] C. Douglass Locke, Tokuda, H; E. Douglas Jensen.
A Time-driven Scheduling Modle for Real-Time Operating Systems.
To appear in Proceedings of Real-time Systems Symposium, 1985.

[McKendry 85] M. S. Mckendry; Herlihy, M.
Time-driven Orphan Elimination.
Teciinical Report CMU-CS Tech Report CMU-CS-85-128, Department of Computer

Science, Carnegie-Mellon University, July, 1985.

[Mitchell 821 Mitchell, J., and Dion, J.
A Comparison of Two Network-Based File Servers.
Communications of the ACM 25(4):233-245, April, 1982.

[Moss 81] Moss, J. E. B.
Nested Transactions: An Approuch io Rulidbi Distribu te d C4:,cput 'ing.
PhD thesis, Massachusetts Institute of Technology, April, 1981.

[Sha 83] Sha, L., Jensen E. D, Rashid, R. F., and Northcutt, J. 0.
Distributed Co-operating Processes and Transactions.
Proceedings of ACM SIGCOMM symposium, 1983.

[Sha 84] Sha, Lui.
Synchronization in Distributed Operating Systems,
PhD thesis, Department of Electrical Engineering, Carnegie-Melicn University,

1984.
in preparation.

25?

j~I',a 851 Sha. L

PhD thesis,. Carnegie Mllon Uriver-;ity, 19135.

(Silbi'rschat., 801 Silbe-rwihatz. A., and Z. Kedem.
Consiste*ncy in Hierarchtical Database !lyst*oms.
.JuurriaiI of the Assoc,.;f ion of Computinq Mfactur'ery 27(1). Janlu'ly. I 19.0

I'Sturgis 801 Sturgjis, H., Mitchell, J. and Israel,&J
Issues in the Design and U~se of a Dirtributed File System.
()peratiniq ";Vstems fleviow 14(3):55 639, July, 1980.

Tokuda -'Q2aj rokiuda, [A Manning, E. G3.
An Interni ocs..y;r Communication Mvodeul for ai Distribi t..ii I oftwaIr I .lbur.
Procasriinq3 of ACM S)IGCOMIM syryipourn , 1983.

[Tokuda 8,3h1 rokuda. H .Fladia, S, R., aind Manninq, U. G.
SThushain CK'). a MesaR b~ased(Oistlri,hid (Jpratiiinio~o for a [)vI',r iit-n

Software Tpstbpd.
PrOC f3f ni~,,i9 of the~ 16th1 lawaiin th. (:o nft on, ! y~armn ; oi ,181

[rokuda 851 rokudai. H.
A Compernatable Atomic Obiects in Obje~ct oriented ()peratinq sy";tolvi.
10o ajpar:irim Procepnhrifr, of Pacific (.orlinpiten Cumni ??/?it 1mr11onlyip Ii?1,I

[Weinrpb 811 Weinrreb, D, Moon, D.
Liz~p Mac:l,,ne Maniual.
Technicail Rbiport, MI11 Artificial IntOllifivnce I aboratory, 1!'1131.

[Wulf 811 Wulf. W. A., Levin, Rl.; H-arbison, 1". P.
1-/OFl-/A /1 nrmp Ati f xporurintaf GoidnJifn :;y!;tr'fll
McGraw Hill, 1981.

-7

